首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
Background:This study was carried out to identify potential key genes associated with the pathogenesis and prognosis of breast cancer (BC).Methods:Seven GEO datasets (GSE24124, GSE32641, GSE36295, GSE42568, GSE53752, GSE70947, GSE109169) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between BC and normal breast tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Hub genes related to the pathogenesis and prognosis of BC were verified by employing protein–protein interaction (PPI) network.Results:Ten hub genes with high degree were identified, including CDK1, CDC20, CCNA2, CCNB1, CCNB2, BUB1, BUB1B, CDCA8, KIF11, and TOP2A. Lastly, the Kaplan–Meier plotter (KM plotter) online database demonstrated that higher expression levels of these genes were related to lower overall survival. Experimental validation showed that all 10 hub genes had the same expression trend as predicted.Conclusion:The findings of this research would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of BC, which could be used as a new biomarker for diagnosis and to guide the combination medicine of BC.  相似文献   

3.
Background:Liver hepatocellular carcinoma (LIHC) and cholangiocarcinoma (CHOL) are common primary liver cancers worldwide. Liver stem cells have biopotential to differentiate into either hepatocytes and cholangiocytes, the phenotypic overlap between LIHC and CHOL has been acceptable as a continuous liver cancer spectrum. However, few studies directly investigated the underlying molecular mechanisms between LIHC and CHOL.Method:To identify the candidate genes between LIHC and CHOL, three data series including GSE31370, GSE15765 and GSE40367 were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and function enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using STRING and Cytoscape.Results:A total of 171 DEGs were identified, consisting of 49 downregulated genes and 122 upregulated genes. Compared with CHOL, the enriched functions of the DEGs mainly included steroid metabolic process, acute inflammatory response, coagulation. Meanwhile, the pathway of KEGG enrichment analyses showed that the upregulated gene(s) were mainly enriched complement and coagulation cascades, cholesterol metabolism and PPAR signaling pathway, while the downregulated gene(s) were mainly enriched in ECM-receptor interaction, focal adhesion, bile secretion. Similarly, the most significant module was identified and biological process analysis revealed that these genes were mainly enriched in regulation of blood coagulation, acute inflammatory response, complement and coagulation cascades. Finally, two (ITIH2 and APOA2) of 10 hub genes had been screened out to help differential diagnosis.Conclusion:171 DEGs and two (ITIH2 and APOA2) of 10 hub genes identified in the present study help us understand the different molecular mechanisms between LIHC and CHOL, and provide candidate targets for differential diagnosis.  相似文献   

4.
5.
BackgroundPulmonary artery hypertension (PAH) is an incurable disease with a high mortality rate. Current medications ameliorate symptoms but cannot target adverse vascular remodeling. New therapeutic strategies for PAH need to be established.MethodsUsing the weighted gene coexpression network analysis (WGCNA) algorithm, we constructed a coexpression network of dataset GSE117261 from the Gene Expression Omnibus (GEO) database. Key modules were identified by the relationship between module eigengenes and clinical traits. Hub genes were screened out based on gene significance (GS), module membership (MM), and mean pulmonary artery pressure (mPAP). External validations were conducted in GSE48149 and GSE113439. Functional enrichment and immune cell infiltration were analyzed using Metascape and CIBERSORTx.ResultsThe WGCNA analysis revealed 13 coexpression modules. The pink module had the highest correlation with PAH in terms of module eigengene (r=0.79; P=2e−18) and module significance (MS =0.43). Functional enrichment indicated genes in the pink module contributed to the immune system process and extracellular matrix (ECM). In the pink module, ECM2 (GS =0.65, MM =0.86, ρ=0.407, P=0.0019) and GLT8D2 (GS =0.63, MM =0.85, ρ=0.443, P=0.006) were identified as hub genes. For immune cells infiltration in PAH lung tissue, hub genes were positively correlated with M2 macrophages and resting mast cells, and were negatively correlated with monocytes, neutrophils, and CD4-naïve T cells.ConclusionsOur research identified 2 hub genes ECM2 and GLT8D2 related to PAH. The functions of these hub genes were involved in the immune process and ECM, indicating that they might serve as candidate therapeutic targets for PAH.  相似文献   

6.
BackgroundAtrial fibrillation (AF) is the most common persistent arrhythmia. Valvular heart disease (VHD) and AF frequently coexist. In our study, from performing bioinformatics analysis, we sought to identify immune-related genes (IRGs) and explore the role of immune cell infiltration in AF-VHD in depth, aiming at investigating the potential molecular mechanism and developing new therapeutic targets for AF, including AF-VHD.MethodsThe gene expression of the GSE41177 and GSE79768 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were analyzed via the limma package in Bioconductor with R software. Differentially expressed immune-related genes (DEIRGs) were selected via combination ImmPort database with DEGs, and the enrichment function and pathway analysis were explored. A protein-protein interaction (PPI) network was built with a Search Tool for the Retrieval of Interacting Genes/Proteins plugin in Cytoscape. The CIBERSORT algorithm was used to evaluate immune infiltration in the left atrial (LA) tissues between AF-VHD and sinus rhythm (SR) patients. Finally, a correlation analysis between key DEIRGs and infiltrating immune cells was performed.ResultsA total of 130 DEIRGs were detected. Enrichment function of DEIRGs demonstrated that they are significant in immune and inflammatory responses. The key DEIRGs assessed by the PPI network and involved in both the immune and inflammatory responses were the C-X-C motif chemokine ligand (CXCL) 1, pro-platelet basic protein (PPBP), CXCL12, and C-C motif chemokine ligand 4 (CCL4). The immune infiltration findings indicated that, compared with the LA tissues from SR patients, the tissues from AF-VHD patients contained a higher proportion of gamma delta T cells, but a lower proportion of CD8 and regulatory T cells. The results of correlation analysis demonstrated that CXCL1 was positively correlated with activated mast cells and significantly negatively correlated with resting mast cells. PPBP, CXCL12, and CCL4 were positively correlated with the infiltration of various immune cells, such as neutrophils, plasma cells, and resting dendritic cells.ConclusionsThe key immune-related genes and the differences in immune infiltration in LA tissues play an essential role in the occurrence and progression of AF-VHD.  相似文献   

7.
Background:Long noncoding RNAs (lncRNAs) can work as microRNA (miRNA) sponges through a competitive endogenous RNA (ceRNA) mechanism. LncRNAs and miRNAs are important components of competitive endogenous binding, and their expression imbalance in hepatocellular carcinoma (HCC) is closely related to tumor development, diagnosis, and prognosis. This study explored the potential impact of the ceRNA regulatory network in HCC on the prognosis of HCC patients.Methods:We thoroughly researched the differential expression profiles of lncRNAs, miRNAs, and mRNAs from 2 HCC Gene Expression Omnibus datasets (GSE98269 and GSE60502). Then, a dysregulated ceRNA network was constructed by bioinformatics. In addition, hub genes in the ceRNA network were screened by Cytoscape, these hub genes functional analysis was performed by gene set enrichment analysis, and the expression of these hub genes in tumors and their correlation with patient prognosis were verified with Gene Expression Profiling Interactive Analysis.Results:A ceRNA network was successfully constructed in this study including 4 differentially expressed (DE) lncRNAs, 7 DEmiRNAs, and 166 DEmRNAs. Importantly, 4 core genes (CCNA2, CHEK1, FOXM1, and MCM2) that were significantly associated with HCC prognosis were identified.Conclusions:Our study provides comprehensive and meaningful insights into HCC tumorigenesis and the underlying molecular mechanisms of ceRNA. Furthermore, the specific ceRNAs can be further used as potential therapeutic targets and prognostic biomarkers for HCC.  相似文献   

8.
BackgroundLung adenocarcinoma is the main pathological type of non-small cell lung cancer (NSCLC). In this study, we analyzed the gene expression profile of lung adenocarcinoma tumor and paracancerous tissues by bioinformatics to assess the genes and signal pathways related to lung adenocarcinoma.MethodsThe expression data of GSE7670, GSE27262, and GSE32863 were downloaded from the Gene Expression Omnibus (GEO) database. The three microarray data sets were integrated to obtain common differential expression genes of lung adenocarcinoma tumor and adjacent tissues. The STRING database was used to construct the protein-protein interaction (PPI) network of lung adenocarcinoma and mine the gene modules and core genes in the network, and the online tools, GEPIA and Kaplan-Meier plotter were used to further verify and analyze the core genes.ResultsThere were 109 pairs of lung adenocarcinoma tissues and matched paracancerous normal lung tissues in the three data sets. Eighty-three differentially expressed genes were identified, including 16 up-regulated and 67 down-regulated genes, and 60 differentially expressed genes were successfully incorporated into the PPI network complex. Eleven core genes were identified in the PPI network complex, including three up-regulated (COMP, SPP1, COL1A1) and eight down-regulated genes (CDH5, CAV1, CLDN5, LYVE1, IL6, VWF, TEK, PECAM1). These core genes were verified by the GEPIA tumor database. Survival analysis showed that expression of the core genes was significantly related to the prognosis of lung adenocarcinoma. KEGG pathway analysis of core genes showed six genes (COMP, SPP1, COL1A1, IL6, VWF, TEK) were significantly enriched in the PI3K-Akt signaling-pathway (P=1.62E-06).ConclusionsBy analyzing the differential expression genes of lung adenocarcinoma and paracancerous normal tissues with bioinformatics, 11 genes with significant differential expression and significant influence on prognosis were identified. The findings may provide new concepts for developing diagnosis and treatment targets and prognosis markers for lung adenocarcinoma.  相似文献   

9.
10.
Background:Hepatitis B Virus (HBV) infection is a global public health problem. After infection, patients experience a natural course from chronic hepatitis to cirrhosis and even Hepatitis B associated Hepatocellular Carcinoma (HBV-HCC). With the multi-omics research, many differentially expressed genes from chronic hepatitis to HCC stages have been discovered. All these provide important clues for new biomarkers and therapeutic targets. The purpose of this study is to explore the differential gene expression of HBV and HBV-related liver cancer, and analyze their enrichments and significance of related pathways.Methods:In this study, we downloaded four microarray datasets GSE121248, GSE67764, GSE55092, GSE55092 and GSE83148 from the Gene Expression Omnibus (GEO) database. Using these four datasets, patients with chronic hepatitis B (CHB) differentially expressed genes (CHB DEGs) and patients with HBV-related HCC differentially expressed genes (HBV-HCC DEGs) were identified. Then Protein–protein Interaction (PPI) network analysis, Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to excavate the functional interaction of these two groups of DEGs and the common DEGs. Finally, the Kaplan website was used to analyze the role of these genes in HCC prognostic.Results:A total of 241 CHB DEGs, 276 HBV-HCC DEGs, and 4 common DEGs (cytochrome P450 family 26 subfamily A member 1 (CYP26A1), family with sequence similarity 110 member C(FAM110C), SET and MYND domain containing 3(SMYD3) and zymogen granule protein 16(ZG16)) were identified. CYP26A1, FAM110C, SMYD3 and ZG16 exist in 4 models and interact with 33 genes in the PPI network of CHB and HBV-HCC DEGs,. GO function analysis showed that: CYP26A1, FAM110C, SMYD3, ZG16, and the 33 genes in their models mainly affect the regulation of synaptic vesicle transport, tangential migration from the subventricular zone to the olfactory bulb, cellular response to manganese ion, protein localization to mitochondrion, cellular response to dopamine, negative regulation of neuron death in the biological process of CHB. In the biological process of HBV-HCC, they mainly affect tryptophan catabolic process, ethanol oxidation, drug metabolic process, tryptophan catabolic process to kynurenine, xenobiotic metabolic process, retinoic acid metabolic process, steroid metabolic process, retinoid metabolic process, steroid catabolic process, retinal metabolic process, and rogen metabolic process. The analysis of the 4 common DEGs related to the prognosis of liver cancer showed that: CYP26A1, FAM110C, SMYD3 and ZG16 are closely related to the development of liver cancer and patient survival. Besides, further investigation of the research status of the four genes showed that CYP26A1 and SMYD3 could also affect HBV replication and the prognosis of liver cancer.Conclusion:CYP26A1, FAM110C, SMYD3 and ZG16 are unique genes to differentiate HBV infection and HBV-related HCC, and expected to be novel targets for HBV-related HCC occurrence and prognostic judgement.  相似文献   

11.
Background:Talaromyces marneffei (T marneffei), known as a significant pathogen in patients with AIDS in Southeast Asia, is a dimorphic fungus, which can cause deadly systematic infection in immunocompromised hosts. What is more, the dimorphic phase transition has been reported as a conspicuous process linked with virulence. Interestingly, the yeast form was found in infected individuals, representing the pathogenic phase. However, few researches were found to study the mechanism of dimorphic transition. Thus, a diverse insight into the dimorphic switch mechanism, is urgently needed and we are the first one to research the mechanism of dimorphism.Methods:Firstly, we investigated the microarray of T. marneffei in the Gene Expression Omnibus database (GEO) for differentially expressed genes (DEGs). Then Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 was employed to analyze the underlying enrichment and pathway in biological process of DEGs. Meanwhile, protein-protein interaction (PPI) network was constructed using STRING database. On the strength of the theory that similar amino acid sequences share similar structures, which play a decisive role on the function of protein, three dimensional structures of hub-genes were predicted to further investigate the likely function of hub-genes.Results:GSE51109 was elected as the eligible series for the purpose of our research, including GSM1238923 (GSM23), GSM1238924 (GSM24), and GSM1238925 (GSM25). PMAA_012920, PMAA_028730, PMAA_068140, PMAA_092900, PMAA_032350 were the most remarkable genes in all of the three PPI networks, thus, were viewed as hub-genes. With regard to the three-dimensional construction, except that there was no significant prediction structure of PMAA_092900 with the criterion seq identify > 30%, GMQE: 0-1, QMEAN4: -4-0, the parallel templates for four structures were Crystal structure of Saccharomyces cerevesiae mitochondrial NADP(+)-dependent isocitrate dehydrogenase in complex with isocitrate, Organellar two-pore channels (TPCs), Yeast Isocitrate Dehydrogenase (Apo Form) and Crystal Structure Of ATP-Dependent Phosphoenolpyruvate Carboxykinase From Thermus thermophilus HB8 in order.Conclusion:The dimorphic transition of T. marneffei was viewed as a pathogenic factor and DEGs were observed. In-depth study of the function and pathway of DEGs revealed that PMAA_012920, PMAA_028730, PMAA_068140, PMAA_092900, PMAA_032350 were most likely acting as the hub-genes and were likely taking effect through regulating energy metabolism.  相似文献   

12.
Background:Esophageal squamous cell carcinoma (ESCC) is a common human malignancy worldwide. The tumorigenesis mechanism in ESCC is unclear.Materials and methods:To explore potential therapeutic targets for ESCC, we analyzed 3 microarray datasets (GSE20347, GSE38129, and GSE67269) derived from the gene expression omnibus (GEO) database. Then, the GEO2R tool was used to screen out differently expressed genes (DEGs) between ESCC and normal tissue. Gene ontology function and kyoto encyclopedia of genes and genomes pathway enrichment analysis were performed using the database for annotation, visualization and integrated discovery to identify the pathways and functional annotation of DEGs. Protein–protein interaction of these DEGs was analyzed based on the search tool for the retrieval of interacting genes database and visualized by Cytoscape software. In addition, we used encyclopedia of RNA interactomes (ENCORI), gene expression profiling interactive analysis (GEPIA), and the human protein atlas to confirm the expression of hub genes in ESCC. Finally, GEPIA was used to evaluate the prognostic value of hub genes expression in ESCC patients and we estimated the associations between hub genes expression and immune cell populations (B Cell, CD8+ T Cell, CD4+ T Cell, Macrophage, Neutrophil, and Dendritic Cell) in esophageal carcinoma (ESCA) using tumor immune estimation resource (TIMER).Results:In this study, 707 DEGs (including 385 upregulated genes and 322 downregulated genes) and 6 hub genes (cyclin B1 [CCNB1], cyclin dependent kinase 1 [CDK1], aurora kinase A [AURKA], ubiquitin conjugating enzyme E2C [UBE2C], cyclin A2 [CCNA2], and cell division cycle 20 [CDC20]) were identified. All of the 6 hub genes were highly expressed in ESCC tissues. Among of them, only CCNB1 and CDC20 were associated with stage of ESCC and all of them were not associated with survival time of patients.Conclusion:DEGs and hub genes were confirmed in our study, providing a thorough, scientific and comprehensive research goals for the pathogenesis of ESCC.  相似文献   

13.
Endometriosis is associated with dysmenorrhea, chronic pelvic pain, and infertility. The specific mechanism of endometriosis remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of endometriosis.The gene expression profiles of GSE25628, GSE5108, and GSE7305 were downloaded from the gene expression omnibus (GEO) database. Differentially expressed gene (DEG) analysis was performed using GEO2R. The database for annotation, visualization, and integrated discovery (DAVID) was utilized to analyze the functional enrichment, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway of the differentially expressed genes. A protein-protein interaction (PPI) network was constructed and module analysis was performed using search tool for the retrieval of interacting genes and cytoscape.A total of 119 common differentially expressed genes were extracted, consisting of 51 downregulated genes and 68 upregulated genes. The enriched functions and pathways of the DEGs and hub genes include DNA strand separation, cellular proliferation, degradation of the extracellular matrix, encoding of smooth muscle myosin as a major contractile protein, exiting the proliferative cycle and entering quiescence, growth regulation, and implication in a wide variety of biological processes.A bioinformatics approach combined with cell experiments in this study revealed that identifying DEGs and hub genes leads to better understanding of the molecular mechanisms underlying the progression of endometriosis, and efficient biomarkers underlying this pathway need to be further investigated.  相似文献   

14.
Bronchopulmonary dysplasia (BPD) remains a major complication and accounts for high morbidity and mortality of preterm infants. The present study aimed to identify the key genes in the development of BPD and to provide some new insights into the pathogenesis of BPD. The GSE108754 dataset was downloaded from Gene Expression Omnibus database containing 5 samples of BPD patients and 6 of non-BPD infants. The differentially expressed genes (DEGs) between BPD and non-BPD patients were identified by R software. The pathway and function enrichment analyses were performed through Database for Annotation Visualization and Integrated Discovery website. The protein-protein interaction network for DEGs was established by Cytoscape software and the most highly connected module was selected through MCODE plugin. Furthermore, the clinical sample verification among 25 BPD patients and 10 non-BPD infants was carried out in our center. Finally, based on the results above, the gene set enrichment analysis focusing on CD74 upregulated status was employed. Totally, 189 DEGs including 147 upregulated genes and 42 downregulated genes between BPD and non-BPD patients were screened out. The pathway and function enrichments revealed these DEGs were mainly enriched in asthma, intestinal immune network for IgA production, antigen processing and presentation and immune response. Thirteen DEGs (CD74, HLA-DMA, HLA-DRA, HLA-DMB, HLA-DOB, HLA-DQA1, HLA-DRB5, HLA-DPA1, HLA-DOA, HLA-DPB1, HLA-DQB2, HLA-DQA2, and HLA-DQB1) were determined as hub genes. The mRNA expression levels of the 13 hub genes were tested by quantitative real-time polymerase chain reaction among our clinical samples. Eventually, CD74 was confirmed to be the most significant highly expressed in BPD samples (P < .001) and its expression level was negatively correlated with gestational age (r = –0.653) and birth weight (r = –0.675). The gene set enrichment analysis results showed the gene sets associated with lupus erythematosus, viral myocarditis, immune network for IgA production, graft versus host disease, cell adhesion molecules and so no were differentially enriched with the phenotype of high-expression CD74. In conclusion, CD74 may serve to predict the BPD development and provide a new therapeutic target for BPD.  相似文献   

15.
Nasopharyngeal carcinoma (NPC) is one of the most prevalent head and neck cancer in southeast Asia. It is necessary to proceed further studies on the mechanism of occurrence and development of NPC.In this study, we employed the microarray dataset GSE12452 and GSE53819 including 28 normal samples and 49 nasopharyngeal carcinoma samples downloaded from the Gene Expression Omnibus(GEO) to analysis. R software, STRING, CMap, and various databases were used to screen differentially expressed genes (DEGs), construct the protein–protein interaction (PPI) network, and proceed small molecule compounds analysis, among others.Totally, 424 DEGs were selected from the dataset. DEGs were mainly enriched in extracellular matrix organization, cilium organization, PI3K-Akt signaling pathway, collagen-containing extracellular matrix, and extracellular matrix-receptor interaction, among others. Top 10 upregulated and top 10 downregulated hub genes were identified as hub DEGs. Piperlongumine, apigenin, menadione, 1,4-chrysenequinone, and chrysin were identified as potential drugs to prevent and treat NPC. Besides, the effect of genes CDK1, CDC45, RSPH4A, and ZMYND10 on survival of NPC was validated in GEPIA database.The data revealed novel aberrantly expressed genes and pathways in NPC by bioinformatics analysis, potentially providing novel insights for the molecular mechanisms governing NPC progression. Although further studies needed, the results demonstrated that the expression levels of CDK1, CDC45, RSPH4A, and ZMYND10 probably affected survival of NPC patients.  相似文献   

16.
Platelet-derived growth factor A (PDGFA), the most known member of PDGF family, plays a crucial role in occurrence and progression of different tumors. However, PDGFA expression and its clinical significance in esophageal squamous cell carcinoma (ESCC) are not clear. The present study aimed to assess the expression and prognostic value of PDGFA in ESCC.The Gene Expression Omnibus databases (GSE53625, GSE23400, and GSE67269) and fresh clinical samples were employed for detecting PDGFA messenger RNA expression in ESCC. The associations of PDGFA expression with clinicopathological characteristics were evaluated by chi-square test. Kaplan–Meier analysis and Cox proportional hazard regression model were performed to determine the prognostic value of PDGFA in ESCC patients. PDGFA-related signaling pathways were defined by gene set enrichment analysis based on Gene Expression Omnibus databases.The PDGFA messenger RNA expression was upregulated in ESCC tissues compared with paired adjacent noncancerous tissues (P < .05) and was positively correlated with T stage (P < .05). Kaplan–Meier survival analysis suggested that ESCC patients with high PDGFA expression were associated with poorer overall survival compared to those with low PDGFA expression (P < .05), especially in advanced T stage (P < .05). Cox analyses showed that high expression of PDGFA was an independent predictor for poor prognosis in ESCC patients. Gene set enrichment analysis identified 3 signaling pathways (extracellular matrix receptor interaction, focal adhesion, and glycosaminoglycan biosynthesis chondroitin sulfate) that were enriched in PDGFA high expression phenotype (all P < .01).PDGFA may serve as an oncogene in ESCC and represent an independent molecular biomarker for prognosis of ESCC patients.  相似文献   

17.
Rhabdomyosarcoma (RMS) is a common malignant soft tissue sarcoma, which is the third most common soft tissue sarcoma after malignant fibrohistoma and liposarcoma. The discovery of potential postbiomarkers could lead to early and more effective treatment measures to reduce the mortality of RMS. The discovery of biomarker is expected to be the direction of targeted therapy, providing a new direction for the precise treatment of RMS.Gene Expression Omnibus database was used to download the tow gene profiles, GSE28511 and GSE135517. GEO2R was applied to identify differently expressed genes (DEGs) between RMS and normal group. Database for Annotation, Visualization and Integrated Discovery and Metascape can perform the enrichment analysis for the DEGs. Protein-protein interaction network was constructed, and the hub genes was identified by the Cytoscape. Expression and overall survival analysis of hub genes were performed.A total of 15 common DEGs were screened between RMS and normal tissues. The enrichment analysis here showed that the DEGs mainly enriched in the muscle filament sliding, myofibril, protein complex, sarcomere, myosin complex, nuclear chromosome, and tight junction. The 6 hub genes (DNA Topoisomerase II Alpha, Insulin Like Growth Factor 2, HIST1H4C, Cardiomyopathy Associated 5, Myosin Light Chain 2 [MYL2], Myosin Heavy Chain 2) were identified. Compared with the normal tissues, MYL2 were down-regulated in the RMS tissues. RMS patients with low expression level of MYL2 had poorer overall survival times than those with high expression levels (P < .05).In summary, lower expression of MYL2 was 1 prediction for poor prognosis of RMS. MYL2 is hope to be the target of therapy, which leads to more effective treatment and reduces the mortality rate of RMS.  相似文献   

18.
19.
The aim of this study was to identify genes and functional pathways associated with damaged cartilage tissues of knee using microarray analysis.The gene expression profile GSE129147 including including 10 knee cartilage tissues from damaged side and 10 knee nonweight-bearing healthy cartilage was downloaded and bioinformatics analysis was made.A total of 182 differentially-expressed genes including 123 up-regulated and 59 down-regulated genes were identified from the GSE129147 dataset. Gene ontology and pathway enrichment analysis confirmed that extracellular matrix organization, collagen catabolic process, antigen processing and presentation of peptide or polysaccharide antigen, and endocytic vesicle membrane were strongly associated with cartilage injury. Furthermore, 10 hub differentially-expressed genes with a higher connectivity degree in protein–protein interactions network were found such as POSTN, FBN1, LOX, insulin-like growth factor binding proteins3, C3AR1, MMP2, ITGAM, CDKN2A, COL1A1, COL5A1.These hub genes and pathways provide a new perspective for revealing the potential pathological mechanisms and therapy strategy of cartilage injury.  相似文献   

20.
Backgrounds:Due to difficulty in early diagnosis of chronic pancreatitis (CP), it is urgent to find novel biomarkers to detect CP. Exosomal microRNAs (Exo-miRNAs) located in the serum may be potential diagnostic and therapeutic targets for CP.Objective:To identify differentially expressed Exo-miRNAs (DE-Exo-miRNAs) in the serum of CP patients, we performed a bioinformatics analysis.Methods:The dataset GSE128508 was downloaded from the Gene Expression Omnibus (GEO) database. The analysis was carried out using BRB-ArrayTools and significance analysis of microarrays (SAM). The target genes of DE-S-Exo-miRNAs were predicted by miRWalk databases. Further gene ontology (GO) term and Kyoto Encyclopedia of Genomes (KEGG) pathway analyses were performed with plug-in ClueGO in Cytoscape software 3.7.0. Subsequently, the interaction regulatory network between encoded proteins of target genes was performed with the Search Tool for the Retrieval of Interacting Genes (STRING) database and analyzed using plug-in Molecular Complex Detection (MCODE) and cytoHubba in Cytoscape software 3.7.0.Results:We identified 227 DE-Exo-miRNAs in the serum. Further analysis using the miRWalk database identified 5164 target genes of these miRNAs. The protein–protein interaction (PPI) regulatory network of 1912 potential target genes for hub 10 up-regulated miRNAs with high degrees and one down-regulated miRNAs were constructed using the STRING database and Cytoscape software. The functional analysis using Cytoscape software tool highlighted that target genes involved in pancreatic cancer. Acinar-ductal metaplasia (ADM) in the inflammatory environment of CP is a precursor of pancreatic cancer. Subsequently, we constructed a network of target genes associated with ADM and their miRNAs.Conclusions:Exo-miRNAs in the serum as well as their target genes may be promising targets for the early diagnosis and treatment of CP. In addition, we identified potential Exo-miRNAs involved in ADM that is a precursor of pancreatic cancer associated with CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号