首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evolution of internal compressive stress from the intermetallic compound (IMC) Cu6Sn5 growth is commonly acknowledged as the key inducement initiating the nucleation and growth of tin (Sn) whisker. This study investigates the effect of Sn-0.7Cu-0.05Ni on the nucleation and growth of Sn whisker under continuous mechanical stress induced. The Sn-0.7Cu-0.05Ni solder joint has a noticeable effect of suppression by diminishing the susceptibility of nucleation and growth of Sn whisker. By using a synchrotron micro X-ray fluorescence (µ-XRF) spectroscopy, it was found that a small amount of Ni alters the microstructure of Cu6Sn5 to form a (Cu,Ni)6Sn5 intermetallic layer. The morphology structure of the (Cu,Ni)6Sn5 interfacial intermetallic layer and Sn whisker growth were investigated by scanning electron microscope (SEM) in secondary and backscattered electron imaging mode, which showed that there is a strong correlation between the formation of Sn whisker and the composition of solder alloy. The thickness of the (Cu,Ni)6Sn5 IMC interfacial layer was relatively thinner and more refined, with a continuous fine scallop-shaped IMC interfacial layer, and consequently enhanced a greater incubation period for the nucleation and growth of the Sn whisker. These verification outcomes proposes a scientifically foundation to mitigate Sn whisker growth in lead-free solder joint.  相似文献   

2.
3.
The in-situ observation of Sn-3.0Ag-0.5Cu solder joints under electromigration was conducted to investigate the microstructure and grain orientation evolution. It was observed that there was a grain rotation phenomenon during current stressing by in-situ electron backscattered diffraction (EBSD). The rotation angle was calculated, which indicated that the grain reorientation led to the decrease of the resistance of solder joints. On the other hand, the orientation of β-Sn played a critical role in determining the migration of Cu atoms in solder joints under current stressing migration. When the angle between the electron flow direction and the c-axis of Sn (defined as α) was close to 0°, massive Cu6Sn5 intermetallic compounds were observed in the solder bulk; however, when α was close to 90°, the migration of the intermetallic compound (IMC) was blocked but many Sn hillocks grew in the anode. Moreover, the low angle boundaries were the fast diffusion channel of Cu atoms while the high grain boundaries in the range of 55°–65° were not favorable to the fast diffusion of Cu atoms.  相似文献   

4.
In this paper we will demonstrate how a thermodynamic-kinetic method can be utilized to rationalize a wide range of interfacial phenomena between Sn-based lead-free solders and Ni metallizations. First, the effect of P on the interfacial reactions, and thus on the reliability, between Sn-based solders and electroless Ni/immersion Au (ENIG) metallizations, will be discussed. Next, the effect of small amounts of Cu in Sn-based solders on the intermetallic compound (IMC), which forms first on top of Ni metallization, will be covered. With the help of thermodynamic arguments a so called critical Cu concentration for the formation of (Cu,Ni)6Sn5 can be determined as a function of temperature. Then the important phenomenon of redeposition of (Au,Ni)Sn4 layer on top of Ni3Sn4 IMC will be discussed in detail. The reasons leading to this behaviour will be rationalized with the help of thermodynamic information and an explanation of why this phenomenon does not occur when an appropriate amount of Cu is present in the soldering system will be given. Finally, interfacial reaction issues related to low temperature Sn-Zn and Sn-Bi based solders and Ni metallization will be discussed.  相似文献   

5.
This paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder.  相似文献   

6.
In an attempt to incorporate tin (Sn) into high-entropy alloys composed of refractory metals Hf, Nb, Ti and Zr with the addition of 3d transition metals Cu, Fe, and Ni, we synthesized a series of alloys in the system HfTiZrSnM (M = Cu, Fe, Nb, Ni). The alloys were characterized crystallographically, microstructurally, and compositionally, and their physical properties were determined, with the emphasis on superconductivity. All Sn-containing alloys are multi-phase mixtures of intermetallic compounds (in most cases four). A common feature of the alloys is a microstructure of large crystalline grains of a hexagonal (Hf, Ti, Zr)5Sn3 partially ordered phase embedded in a matrix that also contains many small inclusions. In the HfTiZrSnCu alloy, some Cu is also incorporated into the grains. Based on the electrical resistivity, specific heat, and magnetization measurements, a superconducting (SC) state was observed in the HfTiZr, HfTiZrSn, HfTiZrSnNi, and HfTiZrSnNb alloys. The HfTiZrSnFe alloy shows a partial SC transition, whereas the HfTiZrSnCu alloy is non-superconducting. All SC alloys are type II superconductors and belong to the Anderson class of “dirty” superconductors.  相似文献   

7.
The volume expansion during Li ion insertion/extraction remains an obstacle for the application of Sn-based anode in lithium ion-batteries. Herein, the nanoporous (np) Cu6Sn5 alloy and Cu6Sn5/Sn composite were applied as a lithium-ion battery anode. The as-dealloyed np-Cu6Sn5 has an ultrafine ligament size of 40 nm and a high BET-specific area of 15.9 m2 g−1. The anode shows an initial discharge capacity as high as 1200 mA h g−1, and it remains a capacity of higher than 600 mA h g−1 for the initial five cycles at 0.1 A g−1. After 100 cycles, the anode maintains a stable capacity higher than 200 mA h g−1 for at least 350 cycles, with outstanding Coulombic efficiency. The ex situ XRD patterns reveal the reverse phase transformation between Cu6Sn5 and Li2CuSn. The Cu6Sn5/Sn composite presents a similar cycling performance with a slightly inferior rate performance compared to np-Cu6Sn5. The study demonstrates that dealloyed nanoporous Cu6Sn5 alloy could be a promising candidate for lithium-ion batteries.  相似文献   

8.
Hydriding/dehydriding properties of a series of LaNi5 based alloys were compared by applying both hydrogen gas phase and electrochemical hydrogen charge/discharge methods. The highest hydrogen absorption capacity of 1.4 wt.% H2 was found for LaNi4.3Co0.4Al0.3, although LaNi4.8Sn0.2 also reveals comparable hydrogen capacity (>1.3%). A significant difference in the hydriding kinetics was observed for all studied alloys before and after activation. The activated alloys (5 cycles at 65 °C, 40 atm. H2) reach their maximum capacities after less than a minute, whereas the pure LaNi5 alloy needs several minutes for complete hydriding. The electrochemical hydriding/dehydriding behavior of the alloys reveals superior performance of LaNi4.3Co0.4Al0.3 and LaNi4.8Sn0.2 compared to the other compositions studied, as the capacity of LaNi4.8Sn0.2 decreases by only 10% for 60 charge/discharge cycles at a current density of 100 mA/g. Good agreement between the hydrogen sorption kinetics of the alloys obtained electrochemically and from hydrogen gas phase has also been observed.  相似文献   

9.
The continuous increase in the consumption of aluminium and its alloys has led to an increase in the amount of aluminium scrap. Due to environmental protection, and to reduce the costs of manufacturing aluminum in recent years, a lot of research is devoted to recycling of aluminum alloys. The paper presents the results of research concerning the possibility of manufacturing standardized alloy 2017A from commercial and post-production scrap by continuous casting. Obtained from recycling process ingots were subjected to analysis of chemical composition and intermetallic phase composition. Based on the results of light microscopy (LM), scanning electron microscopy + electron dispersive spectroscopy (SEM + EDS), and X-ray diffraction (XRD) the following phases in the as-cast state were identified: θ-Al2Cu, β-Mg2Si, Al7Cu2Fe, Q-Al4Cu2Mg8Si7, and α-Al15(FeMn)3(SiCu)2. During solution heat treatment most of the primary precipitates of intermetallic phases, like θ-Al2Cu, β-Mg2Si, and Q-Al4Cu2Mg8Si7, were dissolved in the solid solution α-Al, and during natural and artificial aging they precipitate as strengthening phases θ-Al2Cu and Q-Al4Cu2Mg8Si7 with high dispersion. The highest hardness—150.3 HB—of 2017A alloy was obtained after solution heat treatment from 510 °C and aging at 175 °C. In the static tensile test the mechanical (Rm and Rp0.2) and plastic (A5) properties were determined for 2017A alloy in the cast state and after T4 heat treatment. The highest strength properties—tensile strength Rm = 450.5 MPa and yield strength R0.2 = 268.7 MPa with good relative elongation A5 = 14.65%, were obtained after solution heat treatment at 510 °C/6 h/water quenching and natural aging at 25 °C for 70 h. The alloy manufactured from recycled scrap is characterized by relatively high mechanical properties.  相似文献   

10.
To enhance the mechanical properties (e.g., strength and elongation) of the face-centered cubic (fcc) α-phase in the Au-Cu-Al system, this study focused on the introduction of the martensite phase (doubled B19 (DB19) crystal structure of Au2CuAl) via the manipulation of alloy compositions. Fundamental evaluations, such as microstructure observations, phase identifications, thermal analysis, tensile behavior examinations, and reflectance analysis, have been conducted. The presence of fcc annealing twins was observed in both the optical microscope (OM) and the scanning electron microscope (SEM) images. Both strength and elongation of the alloys were greatly promoted while the DB19 martensite phase was introduced into the alloys. Amongst all the prepared specimens, the 47Au41Cu12Al and the 44Au44Cu12Al alloys performed the optimized mechanical properties. The enhancement of strength and ductility in these two alloys was achieved while the stress plateau was observed during the tensile deformation. A plot of the ultimate tensile strength (UTS) against fracture strain was constructed to illustrate the effects of the introduction of the DB19 martensite phase on the mechanical properties of the alloys. Regardless of the manipulation of the alloy compositions and the introduction of the DB19 martensite phase, the reflectance stayed almost identical to pure Au.  相似文献   

11.
BiFeO3 is considered as a single phase multiferroic. However, its magnetism is very weak. We study the magnetic properties of BiFeO3 by Cu and (Cu, Zn). Polycrystalline samples Bi(Fe0.95Cu0.05)O3 and BiFe0.95(Zn0.025Cu0.025)O3 are prepared by the sol-gel method. The magnetic properties of BiFe0.95(Zn0.025Cu0.025)O3 are greater than that of BiFeO3 and Bi(Fe0.95Cu0.05)O3. The analyses of X-ray absorption fine structure data show that the doped Cu atoms well occupy the sites of the Fe atoms. X-ray absorption near edge spectra data confirm that the valence state of Fe ions does not change. Cu and Zn metal ion co-doping has no impact on the local structure of the Fe and Bi atoms. The modification of magnetism by doping Zn can be understood by the view of the occupation site of non-magnetically active Zn2+.  相似文献   

12.
The current study investigated the microstructure modification in Al–6Mg–5Si–0.15Ti alloy (in mass %) through the minor addition of Ca using Mg + Al2Ca master alloy and heat treatment to see their impact on mechanical properties. The microstructure of unmodified alloy (without Ca) consisted of primary Al, primary Mg2Si, binary eutectic Al–Mg2Si, ternary eutectic Al–Mg2Si–Si, and iron-bearing phases. The addition of 0.05 wt% Ca resulted in significant microstructure refinement. In addition to refinement, lamellar to fibrous-type modification of binary eutectic Al–Mg2Si phases was also achieved in Ca-added (modified) alloy. This modification was related to increasing Ca-based intermetallics/compounds in the modified alloy that acted as nucleation sites for binary eutectic Al–Mg2Si phases. The dendritic refinement with Ca addition was related to the fact that it improves the efficacy of Ti-based particles (TiAl3 and TiB2) in the melt to act as nucleation sites. In contrast, the occupation of oxide bifilms by Ca-based phases is expected to force the iron-bearing phases (as iron-bearing phases nucleate at oxide films) to solidify at lower temperatures, thus reducing their size. The as-cast microstructure of these alloys was further modified by subjecting them to solution treatment at 540 °C for 6 h, which broke the eutectic structure and redistributed Mg2Si and Si phases in Al-matrix. Subsequent aging treatment caused a dramatic increase in the tensile strength of these alloys, and tensile strength of 291 MPa (with El% of 0.45%) and 327 MPa (with El% of 0.76%) was achieved for the unmodified alloy and modified alloy, respectively. Higher tensile strength and elongation of the modified alloy than unmodified alloy was attributed to refined dendritic structure and modified second phases.  相似文献   

13.
Electrochemical corrosion behavior of ternary tin-zinc-yttrium (Sn-9Zn-xY) solder alloys were investigated in aerated 3.5 wt.% NaCl solution using potentiodynamic polarization techniques, and the microstructure evolution was obtained by scanning electron microscope (SEM). Eight different compositions of Sn-9Zn-xY (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, and 0.30 wt.%) were compared by melting. The experimental results show that when the content of Y reached 0.06 wt.%, the grain size of Zn-rich phase became the smallest and the effect of grain refinement was the best, but there was no significant effect on the melting point. With the increases of Y content, the spreading ratio first increased and then decreased. When the content of Y was 0.06 wt.%, the Sn-9Zn-0.06Y solder alloy had the best wettability on the Cu substrate, which was increased by approximately 20% compared with Sn-9Zn. Besides, the electrochemical corrosion experimental shows that the Y can improve the corrosion resistance of Sn-9Zn system in 3.5 wt.% NaCl solution, and the corrosion resistance of the alloy is better when the amount of Y added is larger within 0.02–0.30 wt.%. Overall considering all performances, the optimal performance can be obtained when the addition amount of Y is 0.06.  相似文献   

14.
Laser welding-brazing was performed to join Ti and Al together. The dual-spot laser beam mode was selected as the heat source in this study. Ti-6Al-4V and 6061-T6 Al alloys were selected as the experimental materials. Al-12Si welding wire was selected as the filler material. The effect of groove shape on the weld appearance, microstructure, temperature field, and mechanical performance of Ti/Al welded-brazed butt joints was investigated. The interfacial intermetallic compound (IMC) layer at the Ti/Weld brazing interface was inhomogeneous in joints with I-shaped and Y-shaped grooves. In Ti/Al joints with V-shaped grooves, the homogeneity of temperature field and IMC layer was improved, and the maximum thickness difference of IMC layer was only 0.20 μm. Nano-sized granular Ti7Al5Si12, Ti5Si3, and Ti(Al,Si)3 constituted the IMCs. The tensile strength of Ti/Al joints with V-shaped grooves was the highest at 187 MPa. The fracture mode transformed from brittle fractures located in the IMC layer to ductile fractures located in the Al base metal, which could be attributed to the improvement of the IMC layer at the brazing interface.  相似文献   

15.
Titanium orthorhombic alloys based on intermetallic Ti2AlNb-phase are attractive materials for lightweight high-temperature applications. However, conventional manufacturing of Ti2AlNb-based alloys is costly and labor-consuming. Additive Manufacturing is an attractive way of producing parts from Ti2AlNb-based alloys. High-temperature substrate preheating during Selective Laser Melting is required to obtain crack-free intermetallic alloys. Due to the nature of substrate preheating, the temperature profile along the build height might be uneven leading to inhomogeneous microstructure and defects. The microstructural homogeneity of the alloy along the build direction was evaluated. The feasibility of mitigating the microstructural inhomogeneity was investigated by fabricating Ti2AlNb-alloy samples with graded microstructure and subjecting them to annealing. Hot isostatic pressing allowed us to achieve a homogeneous microstructure, eliminate residual micro defects, and improve mechanical properties with tensile strength reaching 1027 MPa and 860 MPa at room temperature and 650 °C, correspondingly. Annealing of the microstructurally graded alloy at 1050 °C allowed us to obtain a homogeneous B2 + O microstructure with a uniform microhardness distribution. The results of the study showed that the microstructural inhomogeneity of the titanium orthorhombic alloy obtained by SLM can be mitigated by annealing or hot isostatic pressing. Additionally, it was shown that by applying multiple-laser exposure for processing each layer it is possible to locally tailor the phase volume and morphology and achieve microstructure and properties similar to the Ti2AlNb-alloy obtained at higher preheating temperatures.  相似文献   

16.
The microstructures and mechanical properties of novel cast Al-Cu-Mg-Ag alloys with and without minor additions of Er (0.09 and 0.2 wt %) are investigated by Vickers hardness tests, tensile tests, optical metallographic examination, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results reveal that the Er addition decreases the hardness value of peak-aged Al-Cu-Mg-Ag alloy but has little influence on the time required for achieving the peak aging condition. Meanwhile, the Ω phase is suppressed in Er-added alloys, leading to a lower tensile strength at room temperature, which causes the (Mg, Ag, Er, V, Ti)-rich phase in the matrix in Er-added alloys. This blocky phase consumes available Mg and Ag atoms for Ω nucleation, leading to the low number density of Ω plates. The strength properties of Er-added alloys at 300 °C are found to be enhanced, which benefits from the pinning effect of the Al8Cu4Er phase on grain boundaries. Meanwhile, the brittle fracture of Er-added alloys at room temperature is directly associated with the Al8Cu4Er phase and the blocky (Mg, Ag, Er, V, Ti)-rich phase, which acts as the source of microcracks during deformation. In addition, no obvious grain refinement effect can be observed in Er-added alloys.  相似文献   

17.
This work studied the thermophysical properties of Mg-24%Cu, Mg-31%Cu, and Mg-45%Cu (wt.%) alloys to comprehensively consider the possibility of using them as thermal energy storage (TES) phase change materials (PCMs) used at high temperatures. The microstructure, phase composition, phase change temperatures, and enthalpy of these alloys were investigated by an electron probe micro analyzer (EPMA), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The XRD and EPMA results indicated that the binary eutectic phase composed of α-Mg and Mg2Cu exists in the microstructure of the prepared Mg–Cu series alloys. The microstructure of Mg-24%Cu and Mg-31%Cu is composed of α-Mg matrix and binary eutectic phases, and Mg-45%Cu is composed of primary Mg2Cu and binary eutectic phases. The number of eutectic phases is largest in Mg-31%Cu alloy. The DSC curves indicated that the onset melting temperature of Mg-24%Cu, Mg-31%Cu, and Mg-45%Cu alloys were 485, 486, and 485 °C, and the melting enthalpies were 152, 215, and 91 J/g. Thermal expansion and thermal conductivity were also determined, revealing that the Mg–Cu alloys had a low linear thermal expansion coefficient and high thermal conductivity with respect to increasing temperatures. In conclusion, the thermal properties demonstrated that the Mg–Cu alloys can be considered as a potential PCM for TES.  相似文献   

18.
In this study, the addition of Sn on the microstructure of Zn 1.6 wt.% Al 1.6 wt.% Mg alloy was studied. Currently, the addition of Sn into Zn-Al-Mg based systems has not been investigated in detail. Both as-cast and annealed states were investigated. Phase transformation temperatures and phase composition was investigated via DSC, SEM and XRD techniques. The main phases identified in the studied alloys were η(Zn) and α(Al) solid solutions as well as Mg2Zn11, MgZn2 and Mg2Sn intermetallic phases. Addition of Sn enabled the formation of Mg2Sn phase at the expense of MgxZny phases, while the overall volume content of intermetallic phases is decreasing. Annealing did not change the phase composition in a significant way, but higher Sn content allowed more effective spheroidization and agglomeration of individual phase particles.  相似文献   

19.
Biodegradable magnesium alloys with Zn, Yb, Ca and Sr additions are potential materials with increased corrosion resistance in physiological fluids that ensure a controlled resorption process in the human body. This article presents the influence of the use of a high cooling rate on the corrosion behavior of Mg60Zn20Yb15.7Ca2.6Sr1.7 alloy proposed for medical applications. The microstructure of the alloy in a form of high-pressure die-casted plates was presented using scanning electron microscopy in the backscattered electrons (BSEs) mode with energy-dispersive X-ray spectrometer (EDX) qualitative analysis of chemical composition. The crystallization mechanism and thermal properties were described on the basis of differential scanning calorimetry (DSC) results. The corrosion behavior of Mg60Zn20Yb15.7Ca2.6Sr1.7 alloy was analyzed by electrochemical studies with open circuit potential (EOCP) measurements and polarization tests. Moreover, light microscopy and X-ray photoelectron spectroscopy were used to characterize the corrosion products formed on the surface of studied samples. On the basis of the results, the influence of the cooling rate on the improvement in the corrosion resistance was proved. The presented studies are novel and important from the point of view of the impact of the technology of biodegradable materials on corrosion products that come into direct contact with the tissue environment.  相似文献   

20.
Manganese can be an optimal alloying addition in lead-free SAC (SnAgCu) solder alloys because of its low price and harmless nature. In this research, the mechanical properties of the novel SAC0307 (Sn/Ag0.3/Cu0.7) alloyed with 0.7 wt.% Mn (designated as SAC0307-Mn07) and those of the traditionally used SAC305 (Sn96.5/Ag3/Cu0.5) solder alloys were investigated by analyzing the shear force and Vickers hardness of reflowed solder balls. During the preparation of the reflowed solder balls, different cooling rates were used in the range from 2.7 K/s to 14.7 K/s. After measuring the shear force and the Vickers hardness, the structures of the fracture surfaces and the intermetallic layer were investigated by SEM (Scanning Electron Microscopy). The mechanical property measurements showed lower shear force for the SAC0307-Mn07 alloy (20–25 N) compared with the SAC305 alloy (27–35 N), independent of the cooling rate. However, the SAC0307-Mn07 alloy was softer; its Vickers hardness was between 12 and 13 HV, whereas the Vickers hardness of the SAC305 alloy was between 19 and 20 HV. In addition, structural analyses revealed rougher intermetallic compound layers in the case of the SAC0307-Mn07 alloy, which can inhibit the propagation of cracks at the solder–substrate interface. These two properties of SAC0307-Mn07 alloy, the softer nature and the rougher intermetallic layer, might result in better thermomechanical behavior of the solder joints during the lifetime of electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号