首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to increasing demand in manufacturing industries, process optimization has become a major area of focus for researchers. This research optimizes the cryogenic machining of aerospace titanium alloy Ti-6Al-4V for industrial applications by studying the effect of varying the nozzle position using two parameters: the nozzle’s separation distance from the tool–chip interface and its inclination angle with respect to the tool rake face. A finite element model (FEM) and computational fluid dynamics (CFD) model are used to simulate the cryogenic impingement of cryogenic carbon dioxide on the tool–workpiece geometry. Experiments are conducted to evaluate cutting forces, tool wear, and surface roughness of the workpiece, and the results are related to the CFD and FEM analyses. The nozzle location is shown to have a significant impact on the cutting temperatures and forces, reducing them by up to 45% and 46%, respectively, while the dominant parameter affecting the results is shown to be the separation distance. Cryogenic machining is shown to decrease adhesion-diffusion wear as well as macroscopic brittle chipping of the cutting insert compared to dry turning, while the workpiece surface roughness is found to decrease by 44% in the case of cryogenic machining.  相似文献   

2.
The paper deals with the main formation patterns of structure and properties of a titanium alloy of the Ti-6Al-4V system during additive manufacturing using cold metal transfer (CMT) wire deposition. The work aims to find the optimal conditions for layer-by-layer deposition, which provides the high physical and mechanical properties of the titanium alloy of the Ti-6Al-4V system hybrid, additively manufactured using CMT deposition. Particular attention is paid to interpass forging during the layered printing of the product. Additionally, we investigate how the heat treatment affects the structure and properties of the Ti-6Al-4V alloy that has been CMT-deposited, both with and without forging. These studies have shown that the hybrid multilayer arc deposition technology, with interpass strain hardening, allows the use of high temperature and high technology titanium alloys to obtain products of a required geometric shape. It has been proven that the interpass deformation effect during CMT deposition contributes to a significant decrease in the sizes of the primary β-grains. In addition, forging enhances the effect of microstructure refinement, which is associated with phase recrystallization in deformed areas. It is shown that the heat treatment leads not only to a change in the morphology of the phases but also to additional phase formations in the structure of the Ti-6Al-4V-deposited metal while the mechanism is realized and consists of the gradual decomposition of the martensitic α′-phase and the formation of a dispersive α2-phase. This structure formation process is accompanied by the dispersion hardening of the α-phase. The strength characteristics of the Ti-6Al-4V alloy obtained using layer-by-layer CMT with forging are given; they exceed the strength level of materials obtained with the traditional technologies of pressure treatment, and there is no decrease in plasticity characteristics. The use of the subsequent heat treatment makes it possible to increase the ductility characteristics of the deposited and forged Ti-6Al-4V material by 1.5–2 times without strength loss.  相似文献   

3.
The study of powder metallurgy processing methods for titanium represents a promising avenue that can respond to a growing demand. This work reports the feasibility of direct powder forging (DPF) as a method to process large spherical Ti-6Al-4V powder into wrought products with noteworthy properties and physical characteristics. Direct powder forging is a thermomechanical process that imparts uniaxial loading to an enclosed and uncompacted powder to produce parts of various sizes and shapes. Stainless steel canisters were filled with prealloyed Ti-6Al-4V powder and consolidated through a multi-step open-die forging and rolling process into wrought DPF bars. After DPF, annealing was performed in the upper α+β phase. The results show that full consolidation was achieved and higher mechanical properties than the Ti-6Al-4V grade F-23 requirements in annealed conditions were obtained. The results also show that direct powder forging of spherical titanium powder could produce wrought mill products and exhibit some potential for further investigation for industrial applications.  相似文献   

4.
Ti-6Al-2Sn-4Zr-6Mo is one of the most important titanium alloys characterised by its high strength, fatigue, and toughness properties, making it a popular material for aerospace and biomedical applications. However, no studies have been reported on processing this alloy using laser powder bed fusion. In this paper, a deep learning neural network (DLNN) was introduced to rationalise and predict the densification and hardness due to Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo alloy. The process optimisation results showed that near-full densification is achieved in Ti-6Al-2Sn-4Zr-6Mo alloy samples fabricated using an energy density of 77–113 J/mm3. Furthermore, the hardness of the builds was found to increase with increasing the laser energy density. Porosity and the hardness measurements were found to be sensitive to the island size, especially at high energy density. Hot isostatic pressing (HIP) was able to eliminate the porosity, increase the hardness, and achieve the desirable α and β phases. The developed model was validated and used to produce process maps. The trained deep learning neural network model showed the highest accuracy with a mean percentage error of 3% and 0.2% for the porosity and hardness. The results showed that deep learning neural networks could be an efficient tool for predicting materials properties using small data.  相似文献   

5.
Application of cryogenic fluids for efficient heat dissipation is gradually becoming part and parcel of titanium machining. Not much research is done to establish the minimum quantity of a cryogenic fluid required to sustain a machining process with respect to a given material removal rate. This article presents an experimental investigation for quantifying the sustainability of milling a commonly used titanium alloy (Ti–6Al–4V) by varying mass flow rates of two kinds of cryogenic coolants at various levels of cutting speed. The three cooling options tested are dry (no coolant), evaporative cryogenic coolant (liquid nitrogen), and throttle cryogenic coolant (compressed carbon dioxide gas). The milling sustainability is quantified in terms of the following metrics: tool damage, fluid cost, specific cutting energy, work surface roughness, and productivity. Dry milling carried out the at the highest level of cutting speed yielded the worst results regarding tool damage and surface roughness. Likewise, the evaporative coolant applied with the highest flow rate and at the lowest cutting speed was the worst performer with respect to energy consumption. From a holistic perspective, the throttle cryogenic coolant applied at the highest levels of mass flow rate and cutting speed stood out to be the most sustainable option.  相似文献   

6.
Titanium and its alloys are characterized by high mechanical strength, good corrosion resistance, high biocompatibility and relatively low Young’s modulus. For many years, one of the most commonly used and described titanium alloys has been Ti-6Al-4V. The great interest in this two-phase titanium alloy is due to the broad possibilities of shaping its mechanical and physico-chemical properties using modern surface engineering techniques. The high coefficient of friction and tendency to galling are the most important drawbacks limiting the application of this material in many areas. In this regard, such methods as carburizing, nitriding, oxidation, and the synthesis of thin films using physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods may significantly improve the tribological properties of titanium alloys. The influence of thermo-chemical treatment (oxidation, carburizing and nitriding) on tribological properties and corrosion resistance of Ti-6Al-4V alloy is presented in this paper. The results include metallographic studies, analysis of tribological and mechanical properties and corrosion resistance as well. They indicate significant improvements in mechanical properties manifested by a twofold increase in hardness and improved corrosion resistance for the oxidation process. The carburizing was most important for reducing the coefficient of friction and wear rate. The nitriding process had the least effect on the properties of Ti-6Al-4V alloy.  相似文献   

7.
Yoshimitsu Okazaki 《Materials》2012,5(12):2981-3005
The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK) than Ti alloy.  相似文献   

8.
This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam AB®) in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast) were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought) was used as a control. The mechanical properties, corrosion properties and grindability (wear properties) were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05). The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.  相似文献   

9.
Ti-6Al-4V is widely used in various fields of modern industry, but it is difficult to obtain an ultra-smooth surface of Ti-6Al-4V due to its poor machinability. In this article, ultraviolet-induced (UV-induced) nanoparticle colloid jet machining was utilized to carry out ultra-precision polishing of Ti-6Al-4V to improve the surface quality. The results of infrared differential spectroscopy before and after polishing show that new chemical bonds such as Ti-O-Ti (Al-O-Ti and V-O-Ti) appear on the Ti-6Al-4V workpiece surface, which indicates that the material of Ti-6Al-4V workpiece is removed through the chemical interaction between TiO2 nanoparticles and workpiece surface in the process of UV-induced nanoparticle colloid jet machining. The comparison of metallographic structure of Ti-6Al-4V before and after polishing shows that the chemical activity and material removal rate of the primary α phase in Ti-6Al-4V is higher than that of the remnant β phase in UV-induced nanoparticle colloid jet machining, which lead to the well-distributed nano-scale surface peaks and valleys at regular intervals on the polished Ti-6Al-4V workpiece surface. After polishing, the longitudinal residual stress on the surface of Ti-6Al-4V workpiece decreases from 75 MPa to 67 MPa and the transverse stress decreases from 13 MPa to 3 MPa. The surface roughness of Ti-6Al-4V workpiece is reduced from Sa 76.7 nm to Sa 2.87 nm by UV-induced nanoparticle colloid jet machining.  相似文献   

10.
The high cost of development and raw materials have been obstacles to the widespread use of titanium alloys. In the present study, the high-throughput experimental method of diffusion couple combined with CALPHAD calculation was used to design and prepare the low-cost and high-strength Ti-Al-Cr system titanium alloy. The results showed that ultra-fine α phase was obtained in Ti-6Al-10.9Cr alloy designed through the pseudo-spinodal mechanism, and it has a high yield strength of 1437 ± 7 MPa. Furthermore, application of the 3D strength model of Ti-6Al-xCr alloy showed that the strength of the alloy depended on the volume fraction and thickness of the α phase. The large number of α/β interfaces produced by ultra-fine α phase greatly improved the strength of the alloy but limited its ductility. Thus, we have demonstrated that the pseudo-spinodal mechanism combined with high-throughput diffusion couple technology and CALPHAD was an efficient method to design low-cost and high-strength titanium alloys.  相似文献   

11.
Although some reports suggest that taper-slip cemented stems may be associated with a higher periprosthetic femoral fractures rate than composite-beam cemented stems, few studies have focused on the biomaterial effect of the polished material on the stem–cement interface. The purpose of this study was to investigate the relationship between surface roughness of materials and bone cement. Four types of metal discs—cobalt-chromium-molybdenum alloy (CoCr), stainless steel alloy 316 (SUS), and two titanium alloys (Ti-6Al-4V and Ti-15Mo-5Zr-3Al)—were prepared. Five discs of each material were produced with varying degrees of surface roughness. In order to evaluate surface wettability, the contact angle was measured using the sessile drop method. A pin was made using two bone cements and the frictional coefficient was assessed with a pin-on-disc test. The contact angle of each metal increased with decreasing surface roughness and the surface wettability of metal decreased with higher degrees of polishing. With a surface roughness of Ra = 0.06 μm and moderate viscosity bone cement, the frictional coefficient was significantly lower in CoCr than in SUS (p = 0.0073). In CoCr, the low adhesion effect with low frictional coefficient may result in excessive taper-slip, especially with the use of moderate viscosity bone cement.  相似文献   

12.
An unmodified, non-spherical, hydride-dehydride (HDH) Ti-6Al-4V powder having a substantial economic advantage over spherical, atomized Ti-6Al-4V alloy powder was used to fabricate a range of test components and aerospace-related products utilizing laser beam powder-bed fusion processing. The as-built products, utilizing optimized processing parameters, had a Rockwell-C scale (HRC) hardness of 44.6. Following heat treatments which included annealing at 704 °C, HIP at ~926 °C (average), and HIP + anneal, the HRC hardnesses were observed to be 43.9, 40.7, and 40.4, respectively. The corresponding tensile yield stress, UTS, and elongation for these heat treatments averaged 1.19 GPa, 1.22 GPa, 8.7%; 1.03 GPa, 1.08 GPa, 16.7%; 1.04 GPa, 1.09 GPa, 16.1%, respectively. The HIP yield strength and elongation of 1.03 GPa and 16.7% are comparable to the best commercial, wrought Ti-6Al-4V products. The corresponding HIP component microstructures consisted of elongated small grains (~125 microns diameter) containing fine, alpha/beta lamellae.  相似文献   

13.
This article describes issues related to the machining of parts made of sintered nickel-cobalt alloy. Longitudinal turning with a CBN (cubic boron nitride) tool was analyzed. The results of experiments showed the influence of cutting parameters in the field of finishing machining on the values of cutting forces and specific cutting force, taking into account the wear of the cutting edge. Measurements and analysis of the topography and roughness parameters of the machined surface, as well as the cutting tool wear, were presented. The microscopic examination showed that the average grain size of the sintered nickel-cobalt alloy was 3.22 ± 0.1 (μm). The presence of the hardening state variability of the material during machining, as well as the value of the cutting force fluctuation as a function of the tool wear VB, were stated. The specific cutting force values increased to a small degree for the tool wear in the range of VB = 0–0.2 mm, and reached similar values in the range kc = 5500–7500 N/mm2. The specific cutting force values increased significantly for wear VB > 0.2 mm and were characterized by a large variability. The occurring phenomena were analyzed and several explanations were proposed. A recommendation was developed for the machining of parts made of sintered nickel-cobalt alloy. The Taguchi method was used in the experiment methodology.  相似文献   

14.
Yoshimitsu Okazaki 《Materials》2012,5(8):1439-1461
Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.  相似文献   

15.
Selective laser sintering (SLS) is being developed for dental applications. This study aimed to investigate the properties of Ti-6Al-4V and pure titanium specimens fabricated using the SLS process and compare them with casting specimens. Besides, the effect of the building direction on the properties of the SLS specimens was also investigated. Specimens were prepared by SLS using Ti-6Al-4V powder or pure titanium powder. Casting specimens were also prepared using Ti-6Al-4V alloys and pure titanium. The mechanical properties (tensile strength and elongation), physical properties (surface roughness, contact angle, and Vickers hardness); corrosion resistors (color difference and corrosion), and surface properties (chemical composition and surface observation) were examined. Both Ti-6Al-4V and pure titanium specimens produced using the SLS process had comparable or superior properties compared with casting specimens. In comparing the building directions, specimens fabricated horizontally to the printing platform showed the greatest tensile strength, and the surface roughness scanned in the horizontal direction to the platform showed the smallest. However, there was no significant effect on other properties. Thus, the SLS process with Ti-6Al-4V powder and pure titanium powder has great performance for the fabrication of dental prosthesis, and there is a possibility for it to take the place of conventional methods.  相似文献   

16.
In the present study, the unique bimodal grain size distribution microstructure with the ultrafine substrate and embedded macro grains was fabricated by a traditional hot-rolling process in a novel low-cost Ti-2Fe-0.1B titanium alloy, which possesses a good combination of strength (around 663 MPa) and ductility (around 30%) without any post heat treatment. Meanwhile, the mechanical behavior and corrosion resistance of hot-rolled Ti-2Fe-0.1B alloy after equal channel angular pressing (ECAP) deformation were studied. Results indicated that the average grain size decreased to 0.24 μm after 4 passes ECAP deformation, which led to the enhancement of tensile strength to around 854 MPa and good ductility to around 15%. In addition, corrosion resistance was also improved after ECAP due to the rapid self-repairing and thicker passivation film. Our study revealed that the novel low-cost titanium alloy after hot-rolling and ECAP could be used instead of Ti-6Al-4V in some industrial applications due to similar mechanical behavior and better corrosion resistance.  相似文献   

17.
Among laser additive manufacturing, selective laser melting (SLM) is one of the most popular methods to produce 3D printing products. The SLM process creates a product by selectively dissolving a layer of powder. However, due to the layerwise printing of metal powders, the initial microstructure is fully acicular α′-martensitic, and mechanical properties of the resultant product are often compromised. In this study, Ti-6Al-4V alloy was prepared using SLM method. The effect of heat treatment was carried out on as-built SLM Ti-6Al-4V alloy from 650–1000 °C to study respective changes in the morphology of α/α′-martensite and mechanical properties. The phase transition temperature was also analyzed through differential thermal analysis (DTA), and the microstructural studies were undertaken by optical microscopy (OM) and scanning electron microscopy (SEM). The mechanical properties were assessed by microhardness and compressive tests before and after heat treatment. The results showed that heat treated samples resulted in a reduction in interior defects and pores and turned the morphology of the α′-martensite into a lamellar (α + β) structure. The strength was significantly reduced after heat treatment, but the elongation was improved due to the reduction in columnar α′-martensite phase. An optimum set of strength and elongation was found at 900 °C.  相似文献   

18.
The objective of this paper is to present a new way of identifying and predicting the relationship between thermodynamic and physical-mechanical parameters in the formation of a layer after spraying on a substrate with NiCrBSi alloy and its subsequent processing by milling. The milling of the spherical surface of the EN 10060 material after spraying was performed on the DMU 40 eVolinear linear milling centre. The experimental part of the article is focused on investigating the influence of cutting parameters when machining a selected combination of materials (substrate-coating: EN 10060 steel-NiCrBSi alloy). The experiment is based on the results of direct measurements of three basic cutting parameters, namely: cutting speed vc (m∙min−1), feed per tooth fz (mm), and the depth of cut ap (mm). The new distribution functions of selected cutting parameters were derived. The analytical results of the thermodynamic calculations performed on nickel-based alloy can be used for accurate predictions of the technological parameters of milling a spherical substrate made of EN 10060 steel after HVOF spraying, and also for both sample preparation and the subsequent production of high-quality coatings.  相似文献   

19.
Surface roughness measurements of machined parts are usually performed off-line after the completion of the machining operation. The objective of this work is to develop a surface roughness prediction method based on the processing of vibration signals during steel end milling operation performed on a vertical CNC machining center. The milling cuts were run under varying conditions (such as the spindle speed, feed rate, and depth of cut). This is a first step in the attempt to develop an online milling process monitoring system. The study presented here involves the analysis of vibration signals using statistical time parameters, frequency spectrum, and time-frequency wavelet decomposition. The analysis resulted in the extraction of 245 features that were used in the evolutionary optimization study to determine optimal cutting conditions based on the measured surface roughness of the milled specimen. Three feature selection methods were used to reduce the extracted feature set to smaller subsets, followed by binarization using two binarization methods. Three evolutionary algorithms—a genetic algorithm, particle swarm optimization and two variants, differential evolution and one of its variants, have been used to identify features that relate to the “best” surface finish measurements. These optimal features can then be related to cutting conditions (cutting speed, feed rate, and axial depth of cut). It is shown that the differential evolution and its variant performed better than the particle swarm optimization and its variants, and both differential evolution and particle swarm optimization perform better than the canonical genetic algorithm. Significant differences are found in the feature selection methods too, but no difference in performance was found between the two binarization methods.  相似文献   

20.
Lightweight materials are finding plentiful applications in various engineering sectors due to their high strength-to-weight ratios. Hole-making is an inevitable requirement for their structural applications, which is often marred by thermal damages of the drill causing unacceptable shortening of tool life. Efficient cooling of the tool is a prime requirement for enhancing the process viability. The current work presents a novel technique of cooling only the twist drill between drilling of holes with no effect of the applied cryogenic coolant transferred to the work material. The technique is applied in the drilling of two commonly used high-strength lightweight materials: carbon fibers reinforced polymer (CFRP) and an alloy of titanium (Ti-6Al-4V). The efficacy of the cooling approach is compared with those of conventionally applied continuous cryogenic cooling and no-cooling. The effectiveness is quantified in terms of tool wear, thrust force, hole quality, specific cutting energy, productivity, and consumption of the cryogenic fluid. The experimental work leads to a finding that between-the-holes cryogenic cooling possesses a rich potential in curbing tool wear, reducing thrust force and specific energy consumption, and improving hole quality in drilling of CFRP. Regarding the titanium alloy, it yields a much better surface finish and lesser consumption of specific cutting energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号