首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
OBJECTIVE: Definitive hematopoiesis starts in the aorta-gonad-mesonephros (AGM) region during mouse development and remarkably expands in the liver at a later stage of ontogeny. gp130 is a signal transducing receptor component shared by all the IL-6 family cytokines, whose gene ablation in mouse results in the significant reduction in the fetal liver hematopoiesis. The present study aims to evaluate the role of gp130 signaling in the fetal mouse AGM hematopoiesis. METHODS AND MATERIALS: Mouse AGM regions from the wild-type and gp130-deficient mice on embryonic day 11.5 were dissociated and cultured with a mixture of cytokines, including one which activates gp130. Wild-type human gp130 and its mutant constructs were introduced into cultured gp130-deficient AGM cells using retrovirus system. To further analyze gp130 downstream signaling, a dominant-negative mutant of STAT3 was also introduced. RESULTS: The gp130 deficiency in the culture of fetal mouse AGM cells resulted in the failure of the expansion of the c-kit(+), Sca-1(+), and lineage markers(-) population. Such failure was rescued by introduction of a wild-type gp130 expression construct but not its mutant constructs having no ability to activate STAT3. In the normal AGM cell culture, introduction of a dominant-negative form of STAT3 in which Y(705) was changed to phenylalanine suppressed the expansion of hematopoietic cell colonies. CONCLUSION: gp130 plays an indispensable role in the expansion of hematopoietic precursor cells in the fetal mouse AGM. In particular, the activation of STAT3 by gp130 is found to be important in this process.  相似文献   

3.
4.
5.
6.
Interleukin (IL)-6 signaling through its soluble receptor (IL-6 transsignaling) directs transition between innate and acquired immune responses by orchestrating the chemokine-directed attraction and apoptotic clearance of leukocytes. Through analysis of mononuclear cell infiltration in WT and IL-6-deficient mice during peritoneal inflammation, we now report that IL-6 selectively governs T cell infiltration by regulating chemokine secretion (CXCL10, CCL4, CCL5, CCL11, and CCL17) and chemokine receptor (CCR3, CCR4, CCR5, and CXCR3) expression on the CD3+ infiltrate. Although blockade of IL-6 trans-signaling prevented chemokine release, chemokine receptor expression remained unaltered suggesting that this response is regulated by IL-6 itself. To dissect the signaling events promoting T cell migration, inflammation was established in knock-in mice expressing mutated forms of the universal signal-transducing element for IL-6-related cytokines gp130. In mice (gp130Y757F/Y757F) deficient in SHP2 and SOCS3 binding, but presenting hyperactivation of STAT1/3, T cell recruitment and CCL5 expression was enhanced. Conversely, both of these parameters were suppressed in mice with ablated gp130-mediated STAT1/3 activation (gp130DeltaSTAT/DeltaSTAT). T cell migration was related to STAT3 activity, because monoallelic deletion of Stat3 in gp130(Y757F/Y757F) mice (gp130Y757F/Y757F:Stat3+/-) corrected the exaggerated responses observed in gp130Y757F/Y757F mice. Consequently, STAT3 plays a defining role in IL-6-mediated T cell migration.  相似文献   

7.
8.
Both experimental and clinical evidence accumulated over the last couple of decades has linked inflammatory activation to the initiation and progression of chronic heart failure (HF). Circulating levels of inflammatory mediators are associated with cardiac function and inform risk prediction in patients, but the effect of anti-inflammatory therapy in HF remains uncertain. Interleukin (IL)-6 type cytokines are central to the inflammatory response, and convey their signals through the ubiquitously expressed glycoprotein (gp) 130 receptor subunit. IL-6-type/gp130 signaling therefore represents an inflammatory nexus, with inherent potential for disease modification. This review focuses on the current knowledge of IL-6/gp130 signaling in relation to HF, with a particular emphasis on the role of soluble gp130 (sgp130), a signaling pathway modulator. Biological aspects of sgp130 and IL-6 signaling are discussed, as are potential novel therapeutic approaches to modulate this central inflammatory signaling pathway.  相似文献   

9.
STAT3 is constitutively activated in Hodgkin cell lines   总被引:24,自引:2,他引:22       下载免费PDF全文
  相似文献   

10.
OBJECTIVE: In murine and rat cardiac myocytes the gp130 system transduces survival as well as hypertrophic signals and via induction of the expression of the potent angiogenic factor VEGF in these cells also indirectly contributes to cardiac repair processes through the development of new blood vessels. There are, however, species differences in receptor specificity and receptor crossreactivity in the gp130-gp130 ligand system. We asked whether gp130 signaling is also involved in the regulation of VEGF in human cardiac myocytes and if so which gp130 ligands are critical for such an effect. METHODS: Human adult cardiac myocytes (HACMs) were isolated from myocardial tissue and characterised by positive staining for myocardial actin, troponin-I and cardiotin. HACMs were treated with the gp130 ligands CT-1, IL-6, LIF or OSM and VEGF-1 was determined by a specific ELISA in the conditioned media of these cells. RT-PCR and Western blot analysis was used in order to detect gp130, IL-6-receptor, LIF-receptor or OSM-receptor specific protein and mRNA in human adult cardiac myocytes and for detection of VEGF-1 specific mRNA in cardiac myocytes after incubation with OSM. Pieces of myocardial tissue were incubated ex vivo in the presence and absence of OSM and VEGF was determined in supernatants of these cultures and immunohistochemistry was performed on the tissue using specific antibodies for VEGF-1. Immunohistochemistry was also employed to detect VEGF in sections from a healthy human heart and in a heart from a patient suffering from acute myocarditis. RESULTS: OSM, but not CT-1, IL-6 or LIF increased VEGF-1 production in human adult cardiac myocytes dose-dependently derived from five different donors. This selective stimulation of VEGF by gp130 ligands was also reflected by a specific receptor expression on these cells. We detected high levels of mRNA for gp130 and the OSM receptor in freshly isolated human cardiac myocytes but only low amounts of mRNA for the IL-6 receptor whereas mRNA for the LIF receptor was hardly detectable by RT-PCR. OSM receptor and IL-6 receptor were also detectable by Western blotting whereas LIF receptor was only present as a faint band. OSM also increased the expression of VEGF-1 mRNA in cardiac myocytes. When pieces of human myocardial tissue were incubated with the gp130 ligands in an ex vivo model only OSM resulted in an increase in VEGF-1 in the supernatants of these cultures. Furthermore, VEGF increased in tissue samples treated with OSM in cardiac myocytes as evidenced by immunohistochemistry. In addition, we found increased VEGF-1 expression in myocardial tissue from a patient suffering from acute myocarditis. CONCLUSION: The gp130-gp130 ligand system is also involved in VEGF regulation in human cardiac myocytes and OSM is the gp130 ligand responsible for this effect in the human system whereas LIF and CT-1 which had been shown to regulate VEGF expression in mouse and rat cardiac myocytes had no effect. Thus we have added OSM, which is produced by activated T lymphocytes and monocytes, to the list of regulatory molecules of VEGF production in the human heart. Our results lend further support to the notion that besides hypoxia, inflammation via induction of VEGF through autocrine or paracrine pathways plays a key role in (re)vascularisation of the myocardium.  相似文献   

11.
12.
gp130 was initially identified as a signal-transducing receptor component that associates with the interleukin 6 receptor (IL-6R) when the receptor is occupied by interleukin 6 (IL-6). It has been revealed that the receptor complexes for IL-6, IL-11, leukemia inhibitory factor (LIF), oncostatin M (OM), and ciliary neurotrophic factor (CNTF) utilize this gp130 protein as a common signal-transducing component, explaining how these cytokines mediate overlapping biological function. Recent observations with mice lacking gp130 or having continuously activated gp130 protein have disclosed an important biological function of gp130 in cardiovascular system: the former mice show extremely hypoplastic development of the ventricular myocardium at 16.5 days postcoitum (dpc), and the latter exhibit hypertrophy of myocardium. These cardiovascular abnormalities are considered to be the results of the perturbation of gp130, which also transduces the signal of cardiotrophin-1 (CT-1), a recently isolated factor causing hypertrophy in cultured cardiomyocytes and having sequence similarity with IL-6, IL-11, LIF, CNTF, and OM. In fact, CT-1 shares gp130 with these cytokines as a critical signaling component. Besides various well-established mechanisms by which cardiac growth and development are regulated, a gp130 signaling may be a newly discovered mechanism that regulates these events.  相似文献   

13.
14.
We have previously demonstrated that STAT3 hyperactivation via the interleukin 6 (IL-6) cytokine family receptor gp130 in gp130 (Y757F/Y757F) mice leads to numerous hematopoietic and lymphoid pathologies, including neutrophilia, thrombocytosis, splenomegaly, and lymphadenopathy. Because IL-6 and IL-11 both signal via a gp130 homodimer, we report here a genetic approach to dissect their individual roles in these pathologies. Neutrophilia and thrombocytosis were absent in gp130 (Y757F/Y757F) mice lacking either IL-6 (gp130 (Y757F/Y757F): IL-6 (-/-)) or the IL-11 receptor alpha subunit (gp130 (Y757F/Y757F): IL-11Ralpha1 (-/-)), and this was associated with a normalized bone marrow compartment. The elevated myelopoiesis and megakaryopoiesis in bone marrow of gp130 (Y757F/Y757F) mice was attributable to an increase by either IL-6 or IL-11 in the STAT3-driven impairment of transforming growth factor beta (TGF-beta) signaling, which is a suppressor of these lineages. In contrast, the absence of IL-6, but not IL-11 signaling, prevented the splenomegaly, abnormal lymphopoiesis, and STAT3 hyperactivation in lymphoid organs of gp130 (Y757F/Y757F) mice. Furthermore, hyperactivation of STAT3 in lymphoid organs was associated with increased expression of IL-6Ralpha, and IL-6Ralpha expression was reduced in gp130 (Y757F/Y757F): Stat3 (+/-) mice displaying normal levels of STAT3 activity. Collectively, these data genetically define distinct roles of IL-6 and IL-11 in driving pathologic hematopoietic and lymphoid responses mediated by STAT3 hyperactivation.  相似文献   

15.
Functional pleiotropy and redundancy are characteristic features of cytokines. To understand the signaling mechanisms of such cytokines, we have proposed a two-chain interleukin (IL) 6 receptor model: IL-6 triggers the association of a ligand-binding chain (IL-6 receptor) and a nonbinding signal transducer (gp130) to form a high-affinity receptor complex, resulting in transmission of the signal by the cytoplasmic portion of gp130. This model would explain the functional redundancy of cytokines if we were to assume that gp130 interacts with several different receptor chains. Here we present data indicating that gp130 functions as a common signal transducer for IL-6, oncostatin M, leukemia inhibitory factor, and ciliary neurotrophic factor. We show that anti-gp130 monoclonal antibodies completely block the biological responses induced by all of these factors. Since leukemia inhibitory factor functions as a cholinergic differentiation factor in nerve cells, as does ciliary neurotrophic factor, these results suggest that gp130 may also play a role in the nervous system.  相似文献   

16.
OBJECTIVE: The proinflammatory cytokines interleukin (IL)-1beta and IL-6 are supposed to be involved in various cardiovascular diseases including reperfusion injury and cardiac hypertrophy. METHODS AND RESULTS: In the present study, we have examined the cytokine expression from 3 h up to 12 weeks after permanent coronary artery occlusion in rats. In the first 3-12 h, there was a strong induction in IL-1beta and IL-6 mRNA expression in the infarct area (up to 50-fold) as well as in the non-infarcted myocardium (up to 15-fold). From day 3 onwards the cytokine expression was not significantly altered compared to sham-operated controls. In addition, the expression of C/AATT-enhancer binding protein-beta was about fourfold elevated in the first hours after myocardial infarction, but not thereafter. Furthermore, the expression of gp130 and IL-6 receptor increased significantly in the infarct area. The elevation in cytokine expression preceded the increase in matrix-metalloproteinase-9 in the infarct area as well as the increase in ANP and collagen expression in the non-infarcted myocardium. CONCLUSIONS: We suggest that IL-6 and IL-1beta act synergistically in promoting resorption of the necrotic tissue, matrix remodeling and wound healing. Furthermore, they may be involved in the early induction of fibrosis and compensatory cardiac hypertrophy of the non-infarcted myocardium, but seem not to play a key role in long-term cardiac remodeling in chronic heart failure after myocardial infarction.  相似文献   

17.
A novel role for STAT3 in cardiac remodeling   总被引:18,自引:0,他引:18  
The binding of ligands to gp130 activates the JAK/STAT signal transduction pathway, where STAT3 plays a central role in transmitting signals from the membrane to the nucleus. STAT3 is essential for gp130-mediated cardiac myocyte hypertrophy. Cardiac-specific disruption of gp130 was shown to present heart failure in response to mechanical stress accompanied by an increase in apoptosis. Thus, the inactivation of STAT3 resulting from the loss of gp130 may be a key event in the transition from cardiac hypertrophy to heart failure. Proper vascular growth is essential for normal cardiac development and remodeling process. Recently, bcl-xL and VEGF have identified as target genes of STAT and together can promote cardiac myocyte survival by prevention of apoptosis and restoration of energy deprivation. In this review, STAT3 is highlighted as a regulator of angiogenic factors, and activation of STAT-mediated signaling in the cardiac myocyte is proposed as a novel therapeutic strategy for the prevention of heart failure.  相似文献   

18.
19.
gp130 is a common signal-transducing receptor subunit for the interleukin (IL)-6 cytokine family. Studies in genetically engineered animal models have demonstrated a critical role for the gp130-dependent cardiomyocyte survival pathway in the transition to heart failure. In the present study, we examined plasma levels of the IL-6 family of cytokines and the soluble form of their receptors in patients with congestive heart failure (CHF). Circulating levels of the IL-6 family of cytokines, soluble IL-6 receptor (sIL-6R), and soluble gp130 (sgp130) were examined in 48 patients with various degrees of CHF, including dilated cardiomyopathy (DCM), ischemic cardiomyopathy (ICM), and valvular cardiomyopathy (VCM). Circulating levels of IL-6, leukemia inhibitory factor (LIF), and sgp130 significantly increased in association with the severity of CHF. No significant difference was observed in the circulating levels of sIL-6R and IL-11 among these patients. Interestingly, DCM patients showed higher circulating sgp130 levels than patients with ICM or VCM. Our findings suggest that gp130 expression in the heart is likely to be dynamic, and that the IL-6 family of cytokines and their common receptor gp130 participates in the pathogenesis of CHF, especially in DCM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号