首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
AIM: To investigate the anti-inflammatory effects of asiatic acid (AA) on lipopolysaccharide (LPS)-induced inflammatory response in human corneal epithelial cells (HCECs). METHODS: Cell viability was measured using a cell counting kit-8 (CCK-8) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the mRNA expression of interleukin-8 (IL-8), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β (TGF-β) in HCECs. Intracellular reactive oxygen species (ROS) was measured using the ROS assay kit. Glutathione (GSH) concentration was measured using the total GSH assay kit. Akt1 and Akt phosphorylation (p-Akt1) levels were measured by Western blotting and immunofluorescence. RESULTS: AA induced toxicity at high concentrations and significantly stimulated the proliferation of HCECs at concentrations of 20 μmol/L for 1h. LPS at concentrations of 300 ng/mL for 1h significantly stimulated the mRNA expression of IL-8, IL-6, IL-1β, TNF-α, and TGF-β in HCECs, while the stimulation effects were significantly inhibited by AA (20 μmol/L). In addition, AA was found to decrease the content of ROS, increase GSH generation, and also inhibit LPS-induced p-Akt in HCECs. CONCLUSION: AA decreases the generation of inflammatory factors IL-8, IL-6, IL-1β, TNF-α, and TGF-β in LPS-stimulated HCECs. AA significantly inhibites the intracellular concentrations of ROS and increases GSH generation. AA also inhibites LPS-induced p-Akt in HCECs. These findings reveal that AA has anti-inflammation effects in LPS-stimulated HCECs.  相似文献   

4.
AIM: To investigate the role of reactive oxygen species (ROS) in epithelial–mesenchymal transition (EMT) and apoptosis of human lens epithelial cells (HLECs). METHODS: Flow cytometry was used to assess ROS production after transforming growth factor β2 (TGF-β2) induction. Apoptosis of HLECs after H2O2 and TGF-β2 interference with or without ROS scavenger N-acetylcysteine (NAC) were assessed by flow cytometry. The corresponding protein expression levels of the EMT marker α-smooth muscle actin (α-SMA), the extracellular matrix (ECM), marker fibronectin (Fn), and apoptosis-associated proteins were detected by using Western blotting in the presence of an ROS scavenger (NAC). Wound-healing and Transwell assays were used to assess the migration capability of HLECs. RESULTS: TGF-β2 stimulates ROS production within 8h in HLECs. Additionally, TGF-β2 induced HLECs cell apoptosis, EMT/ECM synthesis protein markers expression, and pro-apoptotic proteins production; nonetheless, NAC treatment prevented these responses. Similarly, TGF-β2 promoted HLECs cell migration, whereas NAC inhibited cell migration. We further determined that although ROS initiated apoptosis, it only induced the accumulation of the EMT marker α-SMA protein, but not COL-1 or Fn. CONCLUSION: ROS contribute to TGF-β2-induced EMT/ECM synthesis and cell apoptosis of HLECs; however, ROS alone are not sufficient for EMT/ECM synthesis.  相似文献   

5.
6.
AIM: To explore the roles of microRNA-let7c (miR-let7c) and transforming growth factor-β2 (TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelial cells. METHODS: Retinal pigment epithelial (ARPE-19) cells were cultured with no serum for 12h, and then with recombinant human TGF-β2 for different lengths of time. ARPE-19 cells were transfected with 1×106 TU/mL miR-let7c mimcs (miR-let7cM), miR-let7c mimcs negative control (miR-let7cMNC) and miR-let7c inhibitor (miR-let7cI) using the transfection reagent. The expression of keratin-18, vimentin, N-cadherin, IKB alpha, p65 were detected by Western blot, quantitative polymerase chain reaction and immunofluorescence. RESULTS: The expression of miR-let7c was dramatically reduced and the nuclear factor-kappa B (NF-κB) signaling pathway was activated after induction by TGF-β2 (P<0.05). In turn, overexpressed miR-let7c significantly inhibited TGF-β2-induced EMT (P<0.05). However, miR-let7c was unable to inhibit TGF-β2-induced EMT when the NF-κB signaling pathway was inhibited by BAY11-7082 (P<0.01). CONCLUSION: The miR-let7c regulates TGF-β2-induced EMT through the NF-κB signaling pathway in ARPE-19 cells.  相似文献   

7.
AIM: To evaluate the effect of exogenous recombinant human bone morphogenic protein-7 (rhBMP-7) on transforming growth factor-β (TGF-β)-induced epithelial mesenchymal cell transition (EMT) and assessed its antifibrotic effect via topical application. METHODS: The cytotoxic effect of rhBMP-7 was evaluated and the EMT of human corneal epithelial cells (HECEs) was induced by TGF-β. HECEs were then cultured in the presence of rhBMP-7 and/or hyaluronic acid (HA). EMT markers, fibronectin, E-cadherin, α-smooth muscle actin (α-SMA), and matrix metaloproteinase-9 (MMP-9), were evaluated. The level of corneal fibrosis and the reepithelization rate were evaluated using a rabbit keratectomy model. Expression of α-SMA in keratocytes were quantified following treatment with different concentrations of rhBMP-7. RESULTS: Treatment with rhBMP-7 attenuated TGF-β-induced EMT in HECEs. It significantly attenuated fibronectin secretion (31.6%; P<0.05), the α-SMA protein level (72.2%; P<0.01), and MMP-9 expression (23.6%, P<0.05) in HECEs compared with cells grown in the presence of TGF-β alone. E-cadherin expression was significantly enhanced (289.7%; P<0.01) in the presence of rhBMP-7. Topical application of rhBMP-7 combined with 0.1% HA significantly reduced the amount of α-SMA+ cells by 43.18% (P<0.05) at a concentration of 2.5 µg/mL and by 47.73% (P<0.05) at 25 µg/mL, compared with the control group, without disturbing corneal reepithelization. CONCLUSION: rhBMP-7 attenuates TGF-β-induced EMT in vitro, and topical application of rhBMP-7 reduces keratocyte myodifferentiation during the early wound healing stages in vivo without hindering reepithelization. Topical rhBMP-7 application as biological eye drops seems to be feasible in diseases involving TGF-β-related corneal fibrosis with corneal reepithelization disorders.  相似文献   

8.
9.
AIM: To investigate the effects of sulforaphane (SFN) on transforming growth factor (TGF)-β2 stimulated migration and epithelial-mesenchymal transition (EMT) in ARPE-19 cells. METHODS: ARPE-19 cells were cultured in the presence or absence of SFN or TGF-β2. SFN toxicity was assessed by performing a lactate dehydrogenase assay (LDH) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays, and cell migration was evaluated by Transwell migration assay. Actin stress fiber formation in ARPE-19 cells was determined using immunofluorescence analysis. Immunoblotting analysis was used to determine fibronectin and α-smooth muscle actin expressions along with the degree of Smad and Akt phosphorylation. RESULTS: SFN inhibited ARPE-19 migration. Additionally, SFN attenuated TGF-β2-induced appearance of actin stress fibers as well as fibronectin and α-smooth muscle actin expressions in these cells. SFN also hindered the TGF-β2-stimulated phosphorylation of Smad2, Smad3, and Akt. SFN showed no cytotoxicity towards ARPE-19 cells. CONCLUSION: SFN inhibits TGF-β2-stimulated migration and EMT in ARPE-19 cells, probably by preventing the establishment of actin stress fibers and Akt and Smad2/3 signaling.  相似文献   

10.
AIM: To investigate the effects of sulforaphane (SFN) on transforming growth factor (TGF)-β2 stimulated migration and epithelial-mesenchymal transition (EMT) in ARPE-19 cells. METHODS: ARPE-19 cells were cultured in the presence or absence of SFN or TGF-β2. SFN toxicity was assessed by performing a lactate dehydrogenase assay (LDH) and 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays, and cell migration was evaluated by Transwell migration assay. Actin stress fiber formation in ARPE-19 cells was determined using immunofluorescence analysis. Immunoblotting analysis was used to determine fibronectin and α-smooth muscle actin expressions along with the degree of Smad and Akt phosphorylation. RESULTS: SFN inhibited ARPE-19 migration. Additionally, SFN attenuated TGF-β2-induced appearance of actin stress fibers as well as fibronectin and α-smooth muscle actin expressions in these cells. SFN also hindered the TGF-β2-stimulated phosphorylation of Smad2, Smad3, and Akt. SFN showed no cytotoxicity towards ARPE-19 cells. CONCLUSION: SFN inhibite TGF-β2-stimulated migration and EMT in ARPE-19 cells, probably by preventing the establishment of actin stress fibers and Akt and Smad2/3 signaling.  相似文献   

11.
12.
G Gerber 《Optometry》2000,71(3):191-194
Competing successfully against 19 superopticals, Gary Gerber, O.D. has built one of America's larger private optometry practices, proving the old business adage, 'The Difference is Service.'  相似文献   

13.
Latanoprost, used clinically in the treatment of glaucoma, induces growth of lashes and ancillary hairs around the eyelids. Manifestations include greater thickness and length of lashes, additional lash rows, conversion of vellus to terminal hairs in canthal areas as well as in regions adjacent to lash rows. In conjunction with increased growth, increased pigmentation occurs. Vellus hairs of the lower eyelids also undergo increased growth and pigmentation. Brief latanoprost therapy for 2-17 days (3-25.5 microg total dosage) induced findings comparable to chronic therapy in five patients. Latanoprost reversed alopecia of the eyelashes in one patient. Laboratory experiments with latanoprost have demonstrated stimulation of hair growth in mice and in the balding scalp of the stumptailed macaque, a primate that demonstrates androgenetic alopecia. The increased number of visible lashes is consistent with the ability of latanoprost to induce anagen (the growth phase) in telogen (resting) follicles while inducing hypertrophic changes in the involved follicles. The increased length of lashes is consistent with the ability of latanoprost to prolong the anagen phase of the hair cycle. Correlation with laboratory studies suggests that initiation and completion of latanoprost hair growth effects occur very early in anagen and the likely target is the dermal papilla.  相似文献   

14.
15.
The effects of recombinant basic fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor-beta (TGF-beta) on migration of human and bovine corneal cells were determined using checkerboard analysis in Boyden chambers. EGF, FGF, and TGF-beta each stimulated high levels of chemotactic migration. Each growth factor, however, induced a different dose-response pattern. Migration stimulated by FGF reached a plateau at a concentration between 100 and 200 ng/ml for endothelial, epithelial, and stromal fibroblasts. By contrast, chemotactic responses to EGF peaked between 10 and 50 ng/ml, then decreased at higher concentrations. TGF-beta also stimulated a peak in migration in all three corneal cells, but the peak of migration occurred at an approximately 1000-fold lower concentration (1 pg/ml) than for EGF. Checkerboard analysis demonstrated that FGF and EGF, but not TGF-beta, stimulated chemokinesis of bovine, stromal, and endothelial cells. These results demonstrate that FGF, EGF, and TGF-beta induce migration in pure populations of bovine and human corneal cells and support the concept that these growth factors may play key roles in corneal wound healing by regulating migration of corneal cells.  相似文献   

16.
The factors that regulate the size of organs to ensure that they fit within an organism are not well understood. A simple organ, the ocular lens serves as a useful model with which to tackle this problem. In many systems, considerable variance in the organ growth process is tolerable. This is almost certainly not the case in the lens, which in addition to fitting comfortably within the eyeball, must also be of the correct size and shape to focus light sharply onto the retina. Furthermore, the lens does not perform its optical function in isolation. Its growth, which continues throughout life, must therefore be coordinated with that of other tissues in the optical train. Here, we review the lens growth process in detail, from pioneering clinical investigations in the late nineteenth century to insights gleaned more recently in the course of cell and molecular studies. During embryonic development, the lens forms from an invagination of surface ectoderm. Consequently, the progenitor cell population is located at its surface and differentiated cells are confined to the interior. The interactions that regulate cell fate thus occur within the obligate ellipsoidal geometry of the lens. In this context, mathematical models are particularly appropriate tools with which to examine the growth process. In addition to identifying key growth determinants, such models constitute a framework for integrating cell biological and optical data, helping clarify the relationship between gene expression in the lens and image quality at the retinal plane.  相似文献   

17.
18.
19.
20.
He X  Li M 《中华眼科杂志》2001,37(1):50-52
目的 探讨地塞米松对培养的人眼小梁细胞生长的影响及抑制小梁细胞表达表皮生长因子(epidermal growth factor EGF)mRNA的情况。方法 取人眼小梁组织进行小梁细胞体外培养,对传3代的小梁细胞进行地塞米松处理实验。实验组在传代后的培养液中按300ug/ml加入地塞米松,另一组作为对照组进行常规培养,观察生长5d后的细胞情况,取培养7d的两组的小梁细胞分别提取RNA,用EGFcDNA探针,a-^32P同位素标记进行斑点杂交,放射自显影。对显影片用计算机激光密度扫描,测定吸光度A值相对值进行组间比较。结果 加入地塞米松300ug/ml实验组,小梁细胞生长明显受到抑制,5d时对照组细胞已经融合,地塞米松组的细胞仍呈集落状态。从对照组小梁细胞提取RNA22.5ug,地塞米松组提取RNA 14ug,取14ug两组等量RNA,用EGFcNDA探针进行斑点杂交。结果阳性。激光密度扫描值地塞米松明显低于对照组。结论 地塞米松对培养的人眼小梁细胞有明显的生长抑制作用,通过抑制总RNA转录及EGFmRNA表达而抑制小梁细胞生长。提示糖皮质激素性青光眼是因抑制了小梁细胞的多种代谢和生理功能所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号