首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
AIM: To investigate the accuracy of intraocular pressure (IOP) as measured by a Reichert Ocular Response Analyzer (ORA), as well as the relationship between central corneal thickness (CCT) and IOP as measured by ORA, Goldmann applanation tonometry (GAT), and dynamic contour tonometry (DCT). METHODS: A total of 158 healthy individuals (296 eyes) were chosen randomly for measurement of IOP. After CCT was measured using A-ultrasound (A-US), IOP was measured by ORA, GAT, and DCT devices in a randomized order. The IOP values acquired using each of the three tonometries were compared, and the relationship between CCT and IOP values were analyzed separately. Two IOP values, Goldmann-correlated IOP value (IOPg) and corneal-compensated intraocular pressure (IOPcc), were got using ORA. Three groups were defined according to CCT: 1) thin cornea (CCT<520μm); 2) normal-thickness cornea (CCT: 520–580μm); and 3) thick cornea (CCT>580μm) groups. RESULTS: In normal subjects, IOP measurements were 14.95±2.99mmHg with ORA (IOPg), 15.21±2.77mmHg with ORA (IOPcc), 15.22±2.77mmHg with GAT, and 15.49±2.56mmHg with DCT. Mean differences were 0.01±2.29mmHg between IOPcc and GAT (P>0.05) and 0.28±2.20mmHg between IOPcc and DCT (P>0.05). There was a greater correlation between IOPcc and DCT (r=0.946, P=0.000) than that between IOPcc and GAT (r=0.845, P=0.000). DCT had a significant correlation with GAT (r=0.854, P=0.000). GAT was moderately correlated with CCT (r=0.296, P<0.001), while IOPcc showed a weak but significant correlation with CCT (r=?0.155, P=0.007). There was a strong negative correlation between CCT and the difference between IOPcc and GAT(r=-0.803,P=0.000), with every 10μm increase in CCT resulting in an increase in this difference of 0.35mmHg. The thick cornea group (CCT>580μm) showed the least significant correlation between IOPcc and GAT (r=0.859, P=0.000); while the thin cornea group (CCT<520μm) had the most significant correlation between IOPcc and GAT (r=0.926, P=0.000). The correlated differences between IOPcc and DCT were not significant in any of the three groups (P>0.05). CONCLUSION: Measurement of IOP by ORA has high repeatability and is largely consistent with GAT measurements. Moreover, the ORA measurements are affected only to a small extent by CCT, and are likely to be much closer to the real IOP value than GAT.  相似文献   

2.

Purpose

To compare the intraocular pressures (IOPs) obtained with the IOPen rebound tonometer, Goldmann applanation tonometer (GAT) and the ocular response analyzer (ORA) and investigate the effects of corneal biomechanical properties on IOPen measurements.

Methods

A total of 198 normal eyes were included in this cross-sectional and randomized study. Three measurements were taken using IOPen. Agreement between tonometers was calculated using the Bland and Altman limits of agreement (LoA) analysis.

Results

The median IOPen IOP was 3 mm Hg below the GAT (P<0.001), 3 mm Hg below the ORA IOP similar to Goldmann (IOPg), and 3 mm Hg below the ORA IOP corrected using corneal parameters (IOPcc)(P<0.01). The LoA width between the IOPen and GAT IOPs varied between 13.92 (mean IOPen IOP) and 15.99 mm Hg (third IOPen measurement). The central corneal thickness (CCT) was unrelated to IOPen measurements (P>0.05). Corneal hysteresis (CH) and corneal rigidity factor (CRF) were correlated with IOPen and GAT.

Conclusions

IOPen underestimated the IOP compared with GAT and ORA. The effect of measurement quality or measurement order on IOPen was low. CCT did not affect the IOPen, but the CH and CRF did. The LoA width between the IOPen and GAT IOPs was higher than between the ORA IOPg or ORA IOPcc and GAT IOPs.  相似文献   

3.

Purpose:

To evaluate corneal biomechanical properties in eyes that has undergone penetrating keratoplasty (PK).

Materials and Methods:

Retrospective observational study in a tertiary care centre. Data recorded included ocular response analyzer (ORA) values of normal and post-keratoplasty eyes [corneal hysteresis (CH), corneal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg), and cornea-compensated intraocular pressure (IOPcc)], corneal topography, and central corneal thickness (CCT). Wilcoxon signed rank test was used to analyze the difference in ORA parameter between post-PK eyes and normal eyes. Correlation between parameters was evaluated with Spearman''s rho correlation.

Results:

The ORA study of 100 eyes of 50 normal subjects and 54 post-keratoplasty eyes of 51 patients showed CH of 8.340 ± 1.85 and 9.923 ± 1.558, CRF of 8.846 ± 2.39 and 9.577 ± 1.631 in post-PK eyes and normal eyes, respectively. CH and CRF did not correlate with post-keratoplasty astigmatism (P =0.311 and 0.276, respectively) while a significant correlation was observed with IOPg (P =0.004) and IOPcc (P < 0.001).

Conclusion:

Biomechanical profiles were significantly decreased in post-keratoplasty eyes with significant correlation with higher IOP as compared with that in normal eyes.  相似文献   

4.

Purpose

To evaluate corneal biomechanical properties after LASIK, ReLEx flex, and the flap-free procedure ReLEx smile by Scheimpflug-based dynamic tonometry (Corvis ST) and non-contact differential tonometry (Ocular Response Analyzer, ORA).

Methods

Patients treated for high myopia (?10.5 to ?5.5 diopters, spherical equivalent refraction) more than one year previously at Aarhus University Hospital were included. Treatments comprised LASIK (35 eyes), ReLEx flex (31 eyes), and ReLEx smile (29 eyes). A control group included 31 healthy eyes. Cornea-compensated IOP (IOPcc), corneal hysteresis (CH), and corneal resistance factor (CRF) were measured with ORA. Corneal applanation and deformation were registered with Corvis ST during an air-pulse.

Results

Multiple linear regression analysis showed that CH and CRF were significantly lower after all keratorefractive procedures compared to healthy controls (p?<?0.05). No significant differences were observed in CH or CRF between the keratorefractive groups. Corvis ST showed no differences in radius at highest concavity (HC radius), time until first applanation (A1 Time), time until second applanation (A2 Time), and deflection length at highest concavity (HC deflection length) between groups. LASIK treated eyes had significantly shorter time until highest concavity than eyes treated with ReLEx smile (HC Time, p?=?0.01). The A1 deflection length was significantly shorter in the keratorefractive groups compared to the healthy controls (p?<?0.05).

Conclusions

Keratorefrative procedures alter the corneal biomechanical properties with regard to corneal hysteresis and corneal resistant factor. The flap-based LASIK and ReLEx flex and the flap-free ReLEx smile result in similar reduction in corneal biomechanics when evaluated by Corvis ST and ORA.  相似文献   

5.
Background Various sources of error, including central corneal thickness (CCT) and structural corneal rigidity, have been proposed for Goldmann applanation tonometry (GAT). The Pascal dynamic contour tonometer (DCT) is a novel device designed for intraocular pressure (IOP) measurements assumed to be largely independent of CCT and corneal curvature. We compared DCT with GAT in eyes with normal corneas of various thickness.Methods We prospectively measured IOP using DCT and GAT in random order in 100 eyes of 100 subjects (M:F=46:54; mean age 42±19, range 23–88 years).Results Mean DCT values were about 1mmHg higher than GAT readings (16±3 vs 15±3 mmHg, p=0.001). Bland–Altman analysis of individual pairs of DCT and GAT measurements revealed a bias of –1.0 mmHg [95% confidence interval (CI): ±1.2]. Neither GAT nor DCT showed a significant correlation with CCT (533±48, range 399–641 m).Conclusions In eyes with normal corneas, DCT allows suitable and reliable IOP measurements which are in good concordance with GAT. Comparison of DCT with intracameral manometry is desirable in the future.  相似文献   

6.

Background

To compare intraocular pressure (IOP) measurements obtained with dynamic contour tonometer (DCT) and Goldmann applanation tonometer (GAT), and to investigate their relationship to central corneal thickness (CCT) in primary congenital glaucoma (PCG) eyes.

Methods

Thirty-one eyes of 31 PCG patients (25.7?±?7.2 years old) were examined. PCG was defined as elevated IOP, enlarged corneal diameter (buphthalmos), Haab’s striae and abnormal findings at gonioscopy. The mean of three measurements of GAT, DCT (quality scores 1 and 2), and CCT were obtained and assessed for agreement by means of Bland–Altman plot and for Spearman correlation test.

Results

Mean CCT was 534?±?72.3 μm (range: 430 to 610 μm). Mean IOP measurements were 15.1?±?4.2 mmHg (range: 5.5 to 22.7 mmHg) for DCT and 14.5?±?5.6 mmHg (range: 7.0 to 34.0 mmHg) for GAT (P?=?0.244). Spearman correlation tests showed that IOP difference (DCT ? GAT) was not correlated with CCT (r 2?=?0.023, P?=?0.417). IOP measurements by DCT were weakly but statistically correlated with those obtained with GAT (r2?=?0.213, P?=?0.0089). Bland–Altman analysis revealed poor agreement between DCT and GAT readings, considering the 95 % confidence intervals of ±10.45 mmHg.

Conclusions

The differences between DCT and GAT readings were not influenced by CCT in this series of patients. Considering the weak correlation and the poor agreement observed between GAT and DCT measurements and that they both may be affected by corneal biomechanical changes, these methods should not be used interchangeably, and may possibly give no meaningful IOP values in PCG patients.  相似文献   

7.

Purpose

To investigate the effects of dehydration and fasting on the intraocular pressure (IOP) and corneal biomechanics during Ramadan in healthy subjects.

Methods

A total of 36 healthy fasting male volunteers with a mean age of 32.7 ± 5.1 years (range 28–38 years) were enrolled in the study. A Reichert Ocular Response Analyzer (ORA) was used to measure the corneal resistance factor (CRF), corneal hysteresis (CH), Goldman-correlated IOP (IOPg), and corneal-compensated IOP (IOPcc), additionally IOP with Goldmann applanation tonometer (IOP-GAT) was taken. All measurements were recorded at 8:00 am and 4:00 p.m. during Ramadan and during a 1-month follow-up after Ramadan was over.

Results

Statistical analysis demonstrated no difference in the ORA measurements including CH, CRF, IOPcc, and IOPg; CCT and CV values between fasting and non-fasting periods or within a single day (diurnal changes). Nine volunteers (25% of total subjects) were excluded because eyedrops were believed to disrupt the Ramadan fast consequently IOP-GAT could not be measured from these subjects. No statistically significant difference was noted between IOP-GAT and IOPg measurements of twenty-seven subjects at the different periods and time points.

Conclusions

Our results reveal that fasting during Ramadan does not profoundly affect corneal biomechanics and IOP values in healthy volunteers without ocular diseases such as glaucoma. When planning corneal refractive surgery and determining IOP, the ORA measurements can be done safely during a Ramadan fast. Moreover, ORA may be a better alternative for patients that refuse IOP measurement via GAT for examining the accuracy of IOP during fasting. Further studies are needed to better understand the role of these parameters on corneal disease and glaucoma during fasting.
  相似文献   

8.

Purpose

To compare intraocular pressure (IOP) measurements with Goldmann applanation tonometry (GAT) and iCare tonometry in normal and post-keratoplasty corneas and to assess the influence of central corneal thickness (CCT), corneal curvature (CC), and corneal astigmatism (CA) on IOP.

Methods

This prospective cross-sectional study included one eye of 101 subjects with normal corneas (58 healthy subjects, 43 glaucoma); and 90 post-keratoplasty patients: 34 penetrating keratoplasties (PK); 20 automated-lamellar-therapeutic keratoplasties (ALTK); 19 Descemet-stripping-automated-endothelial keratoplasties (DSAEK); 17 edematous grafts. All subjects underwent GAT and iCare IOP measurements in random order, and CCT, CC, and CA evaluation. The Bland–Altman method and multivariate regression analysis were used to assess inter-tonometer agreement and the influence of CCT, CC, and CA on IOP.

Results

iCare significantly underestimated IOP in all groups compared with GAT (GAT minus iCare of 3.5±3.5 mm Hg, P<0.001), but overestimated IOP in the edematous grafts (GAT minus iCare of −6.5±1.9 mm Hg, P<0.001). In normal corneas, both tonometer measurements were directly related to CCT values; iCare readings appeared inversely related to CC. There was no significant relationship between IOP and CCT, CC and CA in post-keratoplasty eyes, except between CC and iCare measurements for PK eyes.

Conclusions

The agreement between GAT and iCare was clinically acceptable in control, ALTK and DSAEK groups, and poor in PK and edematous grafts eyes. In normal corneas, GAT was significantly affected by CCT; iCare was influenced by CCT and CC. The iCare appeared less influenced by corneal edema when compared with GAT. High IOP readings taken with both tonometers in grafts should raise suspicion of true elevated IOP.  相似文献   

9.

Background

The intraocular pressure (IOP) could be measured by both Goldmann applanation tonometry (GAT) and dynamic contour tonometry (DCT). Although these two methods have been discussed widely after laser-assisted sub-epithelial keratectomy (LASIK), there is little data in the cases undergoing photorefractive keratectomy (PRK). We aimed to compare the changes of IOP measurements obtained by GAT and DCT after PRK for myopia/myopic astigmatism.

Methods

This prospective study enrolled 77 candidates (154 eyes) for PRK to correct myopia or myopic astigmatism and 30 matched patients (30 eyes) with myopia or myopic astigmatism who served as controls. Changes of the IOP measurements (ΔIOP) obtained by GAT and DCT before and at 6 months after PRK in the operated eyes, and at baseline and 6 months later in the controls, were documented. Changes of the central corneal thickness (ΔCCT) were determined in the same fashion.

Results

The mean IOP readings obtained by DCT were comparable before and at 6 months after procedure (18.34 ± 3.03 mmHg and 17.87 ± 2.61 mmHg respectively, p?=?0.41); whereas the mean IOP reading obtained by GAT decreased significantly 6 months postoperatively (17.92 ± 3.63 mmHg and 16.25 ± 2.66 mmHg, p?<?0.001). A significant correlation was present between the ΔIOP obtained by GAT and ΔCCT (r?=?0.61, p?<?0.001). Similar correlation was not significant between the DCT-obtained ΔIOP and the ΔCCT (r?=?0.07, p?=?0.44). The mean ΔIOP obtained by GAT was significantly higher in the operated eyes than in the controls (?1.54?±?1.45 vs 0.07?±?0.44 mmHg, p?=?0.02). The mean DCT-obtained ΔIOP was just marginally insignificant between the operated and nonoperated eyes (?0.63?±?0.59 vs 0.02?±?0.38 mmHg respectively; p?=?0.09).

Conclusions

The authors recommend DCT after PRK in the cases with myopia or myopic astigmatism  相似文献   

10.

Purpose

To investigate the effect of aging on ocular parameters, including intraocular pressure (IOP), measured with different tonometry methods in healthy young (HY) and healthy elderly (HE) subjects and to study the effect of corneal parameters on tonometry methods.

Methods

In this prospective, cross-sectional study, fifty eyes of 50 HY subjects (28 females, 22–31 years of age) and 43 eyes of 43 HE subjects (22 females, 64–79) were included. IOP was measured with four tonometry methods in a standardized order: ocular response analyser (ORA), dynamic contour tonometry (DCT), applanation resonance tonometry (ART) and Goldmann applanation tonometry (GAT). Other measurements included axial length (AL), central corneal thickness (CCT), corneal curvature (CC), anterior chamber volume (ACV), corneal hysteresis (CH) and corneal resistance factor (CRF).

Results

The mean IOP (HY/HE; mmHg?±?standard deviation (SD)) was 12.2?±?2.2/14.1?±?3.5 with GAT. IOP was significantly higher (difference?±?standard error) in HE compared to HY measured with an ORA (+3.1 mmHg?±?0.6), GAT (+1.9?±?0.6) and DCT (+1.6?±?0.6). No significant difference was found in IOP measured with ART. CH and ACV were significantly lower in HE compared to HY. There was no difference between the groups in CCT, CC, AL or CRF. No tonometry method was dependant on CCT or CC.

Conclusions

IOP measured with an ORA and via DCT and GAT was higher in HE compared to HY Swedish subjects, while IOP measured with ART did not differ between the groups. In these homogeneous groups, tonometry methods were independent of CCT and CC.
  相似文献   

11.
The aim of this study was to compare the intra-ocular pressure (IOP) obtained by ocular response analyzer (ORA), dynamic contour tonometer (DCT) and Goldmann applanation tonometer (GAT). In 102 patients (47 with primary open-angle glaucoma and 55 healthy controls) IOP was measured with GAT, ORA and DCT in one eye. The agreement between GAT, DCT and ORA values was assessed using Bland–Altman plots. The discrepancy between the methods was related to central corneal thickness (CCT), corneal hysteresis (CH) and corneal resistance factor (CRF) using linear regression models. Significant differences were observed amongst DCT, corneal compensated ORA (ORAcc) and GAT (P < 0.01). Only the ORAcc and DCT were comparable. ORAcc and DCT significantly over-estimated IOP compared to GAT and for ORAcc this difference depended on the height of IOP. A significant correlation was found between CCT and the deviation of DCT and ORAcc from corrected GAT (both P < 0.0001). Our study showed a low degree of agreement between IOP measured by ORA, DCT and GAT. DCT and ORAcc over-estimated the IOP compared to GAT.  相似文献   

12.

Purpose

To evaluate the influence of silicone hydrogel contact lenses on the intraocular pressure (IOP) measurement using Goldmann applanation tonometry (GAT), non-contact tonometry (NCT), and Pascal dynamic contour tonometry (DCT).

Methods

We included in the study 40 eyes of 40 patients who did not have any ocular or systemic diseases or contraindications to contact lens use. We measured and recorded the IOP values of each patient using NCT without and with contact lenses (groups 1 and 2, respectively), using DCT without and with contact lenses (groups 3 and 4, respectively), and using GAT without contact lenses (group 5).

Results

The mean IOP value of group 1 was 14.55±2.95 mm Hg and 13.92±2.58 mm Hg in group 2. We detected no statistically significant difference between group 1 and group 2 (P=0.053). The mean IOP values for group 3 and group 4 were 16.26±2.33 mm Hg and 15.19±2.40 mm Hg, respectively. We detected a statistically significant difference between groups 3 and 4 (P=0.005). Group 5''s mean IOP value was 12.97±2.65 mm Hg. IOP values measured with DCT were statistically significantly higher compared with IOP values measured with NCT and GAT (P<0.0001 and P<0.0001, respectively). Additionally, IOP values measured with NCT were statistically significantly higher compared with IOP values measured with GAT (P<0.0001).

Conclusion

According to the results of our study, silicone hydrogel soft contact lens use does not significantly affect IOP values measured with NCT, but it affects IOP values measured with DCT.  相似文献   

13.

Aim:

We sought to identify differences in the following measures of the ocular response analyser (ORA) between primary open angle glaucoma (POAG) and exfoliative glaucoma (EXG) patients: Corneal hysteresis (CH), corneal resistance factor (CRF), corneal-compensated intraocular pressure (IOPcc) and Goldmann-correlated intraocular pressure (IOPg). We also sought to relate these ORA measures with central corneal thickness (CCT).

Materials and Methods:

This cross-sectional study was conducted on a total of 162 individuals (46 EXG patients, 66 POAG patients and 50 healthy subjects without any ocular and systemic disease). ORA measurements were performed, and a minimum of three readings were obtained from each test subject. Groups were compared according to their ORA parameters.

Results:

The mean CH levels of the EXG, POAG and healthy subjects were 7.6 ± 2.1, 9.1 ± 1.9 and 9.6 ± 1.7 mmHg, respectively. CH was significantly lower in the EXG patients compared to the other groups (P < 0.001). The mean CRF levels of the EXG, POAG and healthy subjects were 9.0 ± 2.0, 10.1 ± 1.7 and 9.8 ± 1.8mmHg, respectively. CRF levels in the eyes of the EXG patients were significantly lower compared to those of either the POAG patients (P = 0.005) or the healthy subjects (P = 0.03), but there was no significant difference in CRF levels between the POAG patients and the healthy subjects (P = 0.59). There was a significant positive correlation between CH and CCT in the EXG patients and healthy subjects (P < 0.001), but this correlation was not present in the POAG patients (P = 0.70).

Conclusions:

In this study, CH and CRF were found to be significantly reduced in the eyes of EXG patients compared to both the POAG patients and healthy subjects. Reduced CH in EXG patients might result in decreased support of peripapillary scleral structure and increased damage to the optic nerve during IOP increase.  相似文献   

14.

Pupose:

The purpose of this study was to compare the biomechanical properties of the cornea and intraocular pressure (IOP) between patients with systemic lupus erythematosis (SLE) and age-matched controls.

Patients and Methods:

In this prospective study, 30 healthy individuals (control group) and 30 patients with SLE (study group) underwent Reichert ocular response analyzer (ORA) measurements. In the right eye of each participant, the corneal hysteresis (CH), corneal resistance factor (CRF), and Goldman-related IOP (IOPg) were recorded using the ORA.

Results:

Mean CH, CRF, IOPg were significantly different between groups. Mean CH was 10.2±0.6 mm Hg in the study group and 11.3±1.3 in the control group (P=0.02); mean CRF was 9.7±1.1 mm Hg and 11.9±1.5 mm Hg, respectively (P=0.001). Mean IOPg was 13.9±2.9 mm Hg in the study group and 16.9±2.6 mm Hg in the control group (P=0.001).

Conclusion:

The biomechanical properties of the cornea are altered in patients with SLE compared with normal controls. These findings should be taken into account when measuring IOP values in patients with SLE as IOP readings may be underestimated in SLE eyes.  相似文献   

15.

Purpose

To determine whether adjusting corneal hysteresis (CH) values for central corneal thickness (CCT) and intraocular pressure (IOP) improves its capability to differentiate primary open-angle glaucoma (POAG) from ocular hypertension (OH).

Methods

This prospective, observational, cross-sectional study included 169 eyes of 169 subjects with a diagnosis of POAG (n=81) or OH (n=88). We utilized the Ocular Response Analyzer (ORA), Pascal Dynamic Contour Tonometer (DCT), Goldmann applanation tonometer (GAT), and ORA ultrasound pachymeter to obtain CH, IOP, and CCT values. Correlational, regression, and t-test analyses were conducted before and after the sample was divided into low, intermediate, and thick CCT subgroups.

Results

In the full sample, CH and CCT were moderately correlated (r=0.44, P<0.001). Although both were related to diagnosis in univariate regression analysis, only CH was independently related to glaucoma diagnosis in multivariate analysis. After the sample was divided into CCT tertiles, CH was significantly lower in POAG vs OH eyes within all three CCT subgroups, and CH was the only multivariate variable that differentiated POAG from OH in each CCT subgroup. Moreover, the relationship between CH and diagnosis was more robust within the CCT subgroups compared with the full sample, suggesting that integrating CCT into CH interpretation is beneficial. Adjusting CH for IOP did not aid diagnostic precision in this study.

Conclusion

Our findings suggest that combining CH and CCT for glaucoma risk assessment improves diagnostic capability compared to using either factor alone. Conversely, adjusting CH for IOP provided no clear clinical benefit in this study.  相似文献   

16.
Objective: To evaluate dynamic contour tonometry (DCT) versus Goldmann applanation tonometry (GAT) intraocular pressure (IOP) measurements in eyes that underwent penetrating keratoplasty (PKP).Design: Prospective, cross-sectional, observational study.Participants: Thirty-one eyes of 28 patients were examined after PKP.Methods: All eyes had undergone PKP with interrupted sutures. The postoperative period was more than 1 year for 25 eyes and less than 1 year for 6. Sutures were removed based on corneal topography and refraction. IOP was measured by both DCT and GAT methods and was correlated to the number of remaining sutures.Results: IOP readings were successfully obtained in 25/31 (80.6%) with DTC and in 21/31 (67.7%) with GAT (p = 0.25). In eyes with fewer than 4 remaining sutures, both methods were successful. In eyes with more than 4 sutures, the success rates of DCT and GAT were 66.7% and 44.4%, respectively (p = 0.18). In PKPs with a postoperative period of more than 1 year, the success rates of DCT and GAT were 96% and 84%, respectively (p = 0.16). In 20 eyes, both methods measured the IOP. The mean IOP obtained by DCT (16.6 [SD 2.8] mm Hg) was higher than the mean IOP obtained from GAT (15.1 [SD 3.6] mm Hg). The IOPs from the 2 instruments correlated significantly (p < 0.05) and the mean difference was 1.5 mm Hg.Conclusions: The success rate in measuring IOP with DCT and GAT did not show any statistically significant difference. Both methods were less effective measuring the IOP after recent PKPs and regrafts. However, DCT seemed to be superior to GAT in corneas with more than 4 remaining sutures and in PKPs performed more than 1 year earlier. The absolute values of IOP were higher with DCT than with GAT.  相似文献   

17.

Purpose

To analyze the effect of ocular residual astigmatism (ORA) on the effectiveness of LASIK for treating high myopic astigmatism.

Methods

This is an observational, cross-sectional study. We studied 116 consecutive myopic eyes with −3 diopters (D) or more of astigmatism that underwent LASIK surgery. The magnitude of uncorrected residual refractive astigmatism 3 months postoperatively was measured.

Results

The mean preoperative cylinder was −4.0±0.83 D (range, −7.5 to −3 D) and the mean preoperative ORA was 0.82±0.5 D. The mean residual refractive cylinder 3 months postoperatively was −0.78±0.83 D (range, −3 to 0 D). No correlation was found between ORA and the refractive cylinder 3 months postoperatively (P=0.6).

Conclusion

In eyes with high myopic astigmatism undergoing LASIK, ORA was not correlated with the residual postoperative cylinder.  相似文献   

18.

Background

The aim of this study was to determine a threshold waveform score (WS) for the best score value (BSV) in the Ocular Response Analyzer (ORA).

Methods

Retrospective study. One hundred and thirty-three healthy adults were recruited. Measurements were done with the ORA 2.04.

Results

Two hundred and sixty-six eyes were analyzed. Mean age was 56.49?±?15.97?years. The mean waveform score of the BSV was 7.39?±?1.32. The waveform scores ranged from 2.8 to 9.7. Kolmogorov–Smirnov test for normality was significant (p?≤ 0.0001). Linear regression showed a significant positive correlation between IOPg (measured with the ORA) and IOP measured with Goldmann applanation tonometry (p?≤?0.0001), as well as significant negative correlation between the difference IOPg–IOP Goldmann and waveform score of the BSV values. Threshold estimation considering 95?% confidence interval was 7.23. Meanwhile, threshold estimation considering the difference IOPg–IOP Goldmann, for 3?mmHg, was 6.7.

Conclusions

When using the ORA device, we recommend that clinicians try to obtain several waveform score measurements of 7 or above. Waveform scores lower than 7 may render less reliable results.  相似文献   

19.

Purpose

The purpose of this study is to compare the retrobulbar hemodynamic parameters in the ophthalmic artery (OA), central retinal artery (CRA), and posterior cilliary arteries (PCA), in open-angle glaucoma (OAG) and angle-closure glaucoma (ACG) patients.

Patients and methods

A total of 52 eyes from 52 patients with OAG and 25 eyes from 25 ACG patients who met the inclusion/exclusion criteria were included in this cross-sectional study. Peak-systolic velocity, end-diastolic velocity, and Pourcelot resistivity index (RI) were assessed in the OA, CRA, and PCA. Intraocular pressure (IOP) was measured both with the Goldmann applanation tonometer (GAT) and with the Dynamic Contour tonometer (DCT) three times, respectively. Ocular pulse amplitude was measured using DCT.

Results

The RI was significantly higher in both the ophthalmic and short PCA in the OAG patients as compared with that in those ACG patients, P=0.003 and 0.048, respectively. There was no correlation between the IOP measured with GAT and the retrobulbar hemodynamic parameters in either OAG or ACG.

Conclusions

There was an increased resistance to blood flow in the OA of OAG as compared with ACG patients. Additionally, the degree of circulatory disturbance was not related to either the IOP or the visual-field damage.  相似文献   

20.

Introduction

Goldmann applanation tonometry (GAT) has been the gold standard for measuring intraocular pressure (IOP) for about 50 years. However, it depends on central corneal thickness (CCT) and is, therefore, prone to being incorrect. Dynamic contour tonometry (DCT) has recently been introduced to measure IOP independently of CCT; however, DCT is costly and difficult. IOP measurement using the ocular response analyzer (ORA) offers noncontact tonometry with declaration of the corneal-compensated IOP (IOPcc), which takes corneal hysteresis (CH) into account and is supposed to be independent of CCT.

Patients and methods

Using the ORA instrument, IOPcc was determined in 192 glaucoma eyes and 59 nonglaucoma eyes. Subsequently, measurement by DCT and GAT was performed. IOP measurements were compared and analyzed with respect to CCT and CH.

Results

Average values were as follows: IOPcc, 18.38±6.3 mmHg; GAT, 14.69±4.5 mmHg; DCT, 15.17±3.9 mmHg; CH, 9.96±2.5 mmHg; CCT, 552±57 μm. Neither CCT nor CH differed between the two groups. There was a positive correlation between GAT and CCT that did not exist for IOPcc and DCT values. However, IOPcc and DCT differed significantly in Bland–Altman analysis (p<0.01). Furthermore, these two IOP values differed significantly with respect to CH and the level of IOP.

Conclusion

Because IOPcc is not a primarily measured variable but also takes CH into account, a direct comparison of DCT and IOPcc values is not acceptable, and a simple correction factor may not be valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号