首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delivery of DNA encoding foreign antigens into mammalian cells can induce adaptive immune responses. There are currently many DNA-based vaccines in clinical trials against infectious diseases and cancer but there is a lack of adjuvants for improvement of responses to DNA-based vaccines. Here, we show augmented systemic and mucosa-associated B cell responses after immunization with a cocktail of seven different plasmids (3 env, 2 gag, 1 rev, 1 RT) combined with mitogen activated apoptotic syngeneic lymphocytes in mice. In addition we show that apoptotic cells can function as adjuvant for induction of cellular immune responses in a magnitude comparable to the cytokine adjuvant GM-CSF in mice. These data suggest that activated apoptotic lymphocytes can act independent as adjuvants to improve antigen-specific DNA vaccines.  相似文献   

2.
New generation vaccines such as recombinant, antigen purified and DNA vaccines are poorly immunogenic due to the lack of an innate immune stimulus. Therefore, search of new adjuvants for these vaccines has become a topic of interesting. In new adjuvant development, saponins are outstanding candidates. Recently, increased attention has been received on plant-derived saponins in search of new adjuvant candidates from traditional Chinese medicinal herbs such as Panax ginseng, Astragalus species, Panax notoginseng,Cochinchina momordica, Glycyrrhiza uralensis and Achyranthes bidentata. Many of the saponins have been found to have adjuvant effects on purified protein antigens. The chemical structures of the saponins are related to their adjuvant activities, and influence the nature of the immune responses. Saponin adjuvants have been reported to stimulate secretion of a broad range of cytokines, suggesting that saponins may act by triggering innate immunity. As these plant-originated adjuvants may promote different branches of the immune system, they have the potential to be used in design of new vaccines so as to induce a desired immune response.  相似文献   

3.
《Vaccine》2016,34(12):1444-1451
IntroductionThere is great interest in developing more effective influenza vaccines for the elderly. Oil-in-water adjuvants can boost humoral responses to seasonal vaccines in elderly subjects but relatively little is known about their mechanism of action.MethodsWe compared humoral and cellular immune profiles in young adult (2 months), mature (11–12 months) or aged (16–17 month) female BALB/c mice following two doses of Alum or AS03-adjuvanted A/H3N2 split-virus antigen (A/Uruguay/716/2007) at 0.75 or 3 μg hemagglutinin (HA) per dose intramuscularly versus 3 μg HA without adjuvant.ResultsOverall, hemagglutination inhibition (HAI), microneutralization (MN) and end-point ELISA titres were higher in the young mice and when an adjuvant was used. Both adjuvants increased humoral responses in older animals but the highest titres across all groups were observed in the AS03-adjuvanted groups. Neither IgG avidity nor A/H3N2-specific splenocyte proliferation was influenced by age, antigen dose or adjuvant. In contrast, cytokine production by ex vivo-stimulated splenocytes differed widely between groups. Most cytokine levels in older mice vaccinated with antigen alone (3 μg HA/dose) were ≤50% of those in young animals. In young mice, cytokine levels increased modestly with Alum and significantly with AS03. Increases tended to be greatest at the lower antigen dose (0.75 μg versus 3 μg HA). In the older animals, Alum had little impact on cytokine production but responses in the AS03 groups paralleled those of the young mice (broad activation of Th1, Th2, and Th17-type cytokines) and the greatest increases were seen with the higher antigen dose (3 μg HA).ConclusionsIn both young and aged mice, Alum and AS03 increased the magnitude of humoral and cellular responses to split influenza virus vaccination. Overall, these effects were most pronounced in the younger animals and the groups receiving AS03. These data support the use of oil-in-water adjuvants in influenza vaccines targeting the elderly.  相似文献   

4.
Henderson A  Propst K  Kedl R  Dow S 《Vaccine》2011,29(32):5304-5312
Development of effective new mucosal vaccine adjuvants has become a priority with the increase in emerging viral and bacterial pathogens. We previously reported that cationic liposomes complexed with non-coding plasmid DNA (CLDC) were effective parenteral vaccine adjuvants. However, little is known regarding the ability of liposome-nucleic acid complexes to function as mucosal vaccine adjuvants, or the nature of the mucosal immune responses elicited by mucosal liposome-nucleic acid adjuvants. To address these questions, antibody and T cell responses were assessed in mice following intranasal immunization with CLDC-adjuvanted vaccines. The effects of CLDC adjuvant on antigen uptake, trafficking, and cytokine responses in the airways and draining lymph nodes were also assessed. We found that mucosal immunization with CLDC-adjuvanted vaccines effectively generated potent mucosal IgA antibody responses, as well as systemic IgG responses. Notably, mucosal immunization with CLDC adjuvant was very effective in generating strong and sustained antigen-specific CD8+ T cell responses in the airways of mice. Mucosal administration of CLDC vaccines also induced efficient uptake of antigen by DCs within the mediastinal lymph nodes. Finally, a killed bacterial vaccine adjuvanted with CLDC induced significant protection from lethal pulmonary challenge with Burkholderia pseudomallei. These findings suggest that liposome-nucleic acid adjuvants represent a promising new class of mucosal adjuvants for non-replicating vaccines, with notable efficiency at eliciting both humoral and cellular immune responses following intranasal administration.  相似文献   

5.
The immunity and protective capability produced by vaccines can vary remarkably according to the kinds of adjuvants being used. In the case of foot-and-mouth disease (FMD) vaccines in pigs, only oil-adjuvant vaccines have been used, and these tend to show lower immunity in pigs than in cattle. New adjuvants for these vaccines are therefore needed. We made different experimental FMD vaccines using new adjuvants (ISA 201, Carbigen, Emulsigen-D) and well-known adjuvants (ISA 206, aluminum hydroxide gel) and then conducted tests to compare the enhancement in pig immunity. More effective immune responses and protection against challenge were observed with the new adjuvants Emulsigen-D and ISA 201 compared to existing adjuvants. In the case of dairy goats, a mixture of Emulsigen-D and aluminum hydroxide gel produced rapid neutralizing antibody responses that were similar to results from tests conducted with pigs.  相似文献   

6.
Vaccine adjuvants are compounds that enhance/prolong the immune response to a co-administered antigen. Saponins have been widely used as adjuvants for many years in several vaccines – especially for intracellular pathogens – including the recent and somewhat revolutionary malaria and shingles vaccines. In view of the immunoadjuvant potential of Q. brasiliensis saponins, the present study aimed to characterize the QB-80 saponin-rich fraction and a nanoadjuvant prepared with QB-80 and lipids (IMXQB-80). In addition, the performance of such adjuvants was examined in experimental inactivated vaccines against Zika virus (ZIKV). Analysis of QB-80 by DI-ESI-ToF by negative ion electrospray revealed over 29 saponins that could be assigned to known structures existing in their congener Q. saponaria, including the well-studied QS-21 and QS-7. The QB-80 saponins were a micrOTOF able to self-assembly with lipids in ISCOM-like nanoparticles with diameters of approximately 43 nm, here named IMXQB-80. Toxicity assays revealed that QB-80 saponins did present some haemolytical and cytotoxic potentials; however, these were abrogated in IMXQB-80 nanoparticles. Regarding the adjuvant activity, QB-80 and IMXQB-80 significantly enhanced serum levels of anti-Zika virus IgG and subtypes (IgG1, IgG2b, IgG2c) as well as neutralized antibodies when compared to an unadjuvanted vaccine. Furthermore, the nanoadjuvant IMXQB-80 was as effective as QB-80 in stimulating immune responses, yet requiring fourfold less saponins to induce the equivalent stimuli, and with less toxicity. These findings reveal that the saponin fraction QB-80, and particularly the IMXQB-80 nanoadjuvant, are safe and capable of potentializing immune responses when used as adjuvants in experimental ZIKV vaccines.  相似文献   

7.
《Vaccine》2019,37(38):5670-5680
Adjuvant Systems (AS) are combinations of immune stimulants that enhance the immune response to vaccine antigens. The first vaccine containing an AS (AS04) was licensed in 2005. As of 2018, several vaccines containing AS04, AS03 or AS01 have been licensed or approved by regulatory authorities in some countries, and included in vaccination programs. These vaccines target diverse viral and parasitic diseases (hepatitis B, human papillomavirus, malaria, herpes zoster, and (pre)pandemic influenza), and were developed for widely different target populations (e.g. individuals with renal impairment, girls and young women, infants and children living in Africa, adults 50 years of age and older, and the general population). Clearly, the safety profile of one vaccine in one target population cannot be extrapolated to another vaccine or to another target population, even for vaccines containing the same adjuvant. Therefore, the assessment of adjuvant safety poses specific challenges. In this review we provide a historical perspective on how AS were developed from the angle of the challenges encountered on safety evaluation during clinical development and after licensure, and illustrate how these challenges have been met to date. Methods to evaluate safety of adjuvants have evolved based on the availability of new technologies allowing a better understanding of their mode of action, and new ways of collecting and assessing safety information. Since 2005, safety experience with AS has accumulated with their use in diverse vaccines and in markedly different populations, in national immunization programs, and in a pandemic setting. Thirteen years of experience using antigens combined with AS attest to their acceptable safety profile. Methods developed to assess the safety of vaccines containing AS have progressed the way we understand and investigate vaccine safety, and have helped set new standards that will guide and support new candidate vaccine development, particularly those using new adjuvants.Focus on the patientWhat is the context? Adjuvants are immunostimulants used to modulate and enhance the immune response induced by vaccination. Since the 1990s, adjuvantation has moved toward combining several immunostimulants in the form of Adjuvant System(s) (AS), rather than relying on a single immunostimulant. AS have enabled the development of new vaccines targeting diseases and/or populations with special challenges that were previously not feasible using classical vaccine technology.What is new? In the last 13 years, several AS-containing vaccines have been studied targeting different diseases and populations. Over this period, overall vaccine safety has been monitored and real-life safety profiles have been assessed following routine use in the general population in many countries. Moreover, new methods for safety assessment, such as a better determination of the mode of action, have been implemented in order to help understand the safety characteristics of AS-containing vaccines.What is the impact? New standards and safety experience accumulated over the last decade can guide and help support the safety assessment of new candidate vaccines during development.  相似文献   

8.
《Vaccine》2022,40(40):5769-5780
Vaccines are very effective in providing protection against many infectious diseases. However, it has proven difficult to develop highly efficacious vaccines against some pathogens and so there is a continuing need to improve vaccine technologies. The first successful and widely used vaccines were based on attenuated pathogens (e.g., laboratory passaged Pasteurella multocida to vaccinate against fowl cholera) or closely related non-pathogenic organisms (e.g., cowpox to vaccinate against smallpox). Subsequently, live vaccines, either attenuated pathogens or non-pathogenic microorganisms modified to deliver heterologous antigens, have been successfully used to induce protective immune responses against many pathogens. Unlike conventional killed and subunit vaccines, live vaccines can deliver antigens to mucosal surfaces in a similar manner and context as the natural infection and hence can often produce a more appropriate and protective immune response. Despite these advantages, there is still a need to improve the immunogenicity of some live vaccines. The efficacy of injectable killed and subunit vaccines is usually enhanced using adjuvants such mineral salts, oils, and saponin, but such adjuvants cannot be used with live vaccines. Instead, live vaccines can be engineered to produce immunomodulatory molecules that can stimulate the immune system to induce more robust and long-lasting adaptive immune responses. This review focuses on research that has been undertaken to engineer live vaccines to produce immunomodulatory molecules that act as adjuvants to increase immunogenicity. Adjuvant strategies with varying mechanisms of action (inflammatory, antibody-mediated, cell-mediated) and delivery modes (oral, intramuscular, intranasal) have been investigated, with varying degrees of success. The goal of such research is to define adjuvant strategies that can be adapted to enhance live vaccine efficacy by triggering strong innate and adaptive immune responses and produce vaccines against a wider range of pathogens.  相似文献   

9.
《Vaccine》2023,41(10):1684-1693
Oil-in-water emulsion-based adjuvants have demonstrated acceptable safety in many disease indications, while their adjuvant activities for vaccines still need to be improved. Recently, the strategy of combining adjuvants with multiple types of immunostimulants has been shown to enhance immune responses. In this study, astragalus polysaccharides were combined with simvastatin as an immunostimulant to construct a compound O/W emulsion adjuvant. The formulations were optimized according to the OVA-specific antibody responses induced in mice. For this reason, high (5 mg/mL), medium (2.5 mg/mL), and low (1.25 mg/mL) concentrations of astragalus polysaccharides and high (10 mg/mL), medium (1 mg/mL), and low (0.1 mg/mL) concentrations of simvastatin were selected. The final optimal formulation of the immunostimulant was a high concentration of astragalus polysaccharides combined with a medium concentration of simvastatin. The optimal compound O/W emulsion adjuvant could induce effective humoral and cellular immune responses that were stronger and more stable than those induced by aluminum adjuvant and Freund's adjuvant. The OVA/HAPS-MSim-OE induced dramatically strong and persistent IgG expressions and Th1-polarized immune responses. What’s more, the highest CD4+/CD8+lymphocyte ratios were observed in OVA/HAPS-MSim-OE group. In addition, compound O/W emulsion adjuvant groups significantly promoted the secretion of IFN-γ and IL-6, which also indicated that the compound O/W emulsion adjuvants could induce both enhanced Th1 and Th2-mediated immune responses but prefer the Th1-mediated ones. This study would contribute to an interesting and promising direction in the development of emulsion-based adjuvants.  相似文献   

10.
Modern vaccines based on purified recombinant antigens have improved their safety; however they induce a suboptimal immune response without the help of adjuvants. Consequently, the development of new adjuvants to enhance the immunogenicity of purified subunit antigens and modulate resulting immune responses is of great interest. In the present study, we evaluated the ability of antimicrobial peptides Oreochromicins previously isolated from tilapia Oreochromis niloticus to enhance adaptive immune responses in mice and tilapia. When co-administrated with ovalbumin in mice, Oreochromicin-1 induced a TH1 humoral immune response. Oreochromicin-2 and 3 induce a TH1 cellular immune response characterized by the induction of interferon-γ in a dose depend manner. Additionally, co-administration of Oreochromicin-1 with the sea lice my32 from Lepeophtheirus salmonis antigen (my32-Ls) increases the humoral immune response in mice and tilapia. We also tested different combinations of these Oreochromicins with the sea lice antigen my32-Ls in mice. Humoral and cellular TH1 responses were enhanced by co-administration of my32-Ls/Oreochromicin-3 and the combination my32-Ls/Oreochromicin-2/3. In agreement with these results, Oreochromicin-1 and 3 enhanced in vitro TH1 cytokine IFN-γ production in Concanavalin A primed splenocytes from naïve mice after a 48 h incubation period. In summary, the results showed that tilapia alpha-helical antimicrobial peptides Oreochromicins are able to boost immune response in mammals and fish, encouraging their use as TH1 molecular adjuvants to subunit antigens.  相似文献   

11.
Protein and peptide-based vaccines provide rigorously formulated antigens. However, these purified products are only weakly immunogenic by themselves and therefore require the addition of immunostimulatory components or adjuvants in the vaccine formulation. Various compounds derived from pathogens, minerals or plants, possess pro-inflammatory properties which allow them to act as adjuvants and contribute to the induction of an effective immune response. The results presented here demonstrate the adjuvant properties of novel saponins derived from the Spanish saffron Crocus sativus. In vivo immunization studies and tumor protection experiments unambiguously establish the value of saffron saponins as candidate adjuvants. These saponins were indeed able to increase both humoral and cellular immune responses to protein-based vaccines, ultimately providing a significant degree of protection against tumor challenge when administered in combination with a tumor antigen. This preclinical study provides an in depth immunological characterization of a new saponin as a vaccine adjuvant, and encourages its further development for use in vaccine formulations.  相似文献   

12.
《Vaccine》2018,36(33):5020-5029
Adjuvants have been proven to be very effective in enhancement of immune response of many antigens. However, few studies involved head-to-head comparison of their potentials in inactive rabies virus vaccine. In this study, we investigated two types of aluminum adjuvants and five other adjuvants (BLPs, AS02, AS03, MF59 and Poly I:C) on their capacity in enhancing the efficacy of rabies vaccine. The differences in immunogenicity and potency of rabies vaccines with different adjuvants were evaluated by immunizations in ICR mice. Compared with other adjuvants, nano-sized aluminum induced earlier and more vigorous production of rabies virus neutralizing antibodies and facilitated a more effective protection in the challenge test. Based on these results, to comprehensively and systematically explore the role of adjuvants in rabies vaccine immunization, blood samples from four groups were chosen to perform mRNA sequencing. The differentially expressed genes (DEGs) of groups were identified, both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted for these DEGs. The results showed that there were significant differences in mRNA expression between the mice after immunization with different adjuvants, but the two aluminum adjuvant vaccines induced similar gene expression. Moreover, the data of enrichment analysis indicated that adjuvants were more advantageous in activating the pathways associated with antigen processing, presentation and initial immunity. These results revealed that adjuvants can be used as an enhancer in rabies vaccination, and nano-sized aluminum may be a candidate adjuvant for the development of more effective rabies vaccines. And these data also provide a basis for understanding the mechanisms underlying adjuvants enhancement of the immune response.  相似文献   

13.
Influenza viruses are major respiratory pathogens and the development of improved vaccines to prevent these infections is of high priority. Here, we evaluated split inactivated A(H3N2) vaccines (A/Uruguay/716/2007) combined or not with adjuvants (AS03, AS25 and Protollin) and administered by three different routes, intramuscular (i.m.), intranasal (i.n.) or intradermal (i.d.), both in BALB/c mice and in ferrets. Ferrets were challenged with the homologous strain A/Uruguay/716/2007 (H3N2) or the heterologous strain A/Perth/16/2009 (H3N2) 4 weeks after the second immunization with A/Uruguay/716/2007 vaccines. Temperature, weight loss and clinical signs were monitored on a daily basis and nasal washes were performed to evaluate viral titers in the upper respiratory tract. All adjuvanted vaccines induced stronger humoral immune responses than unadjuvanted ones in both mice and ferrets. In mice, the AS03- and AS25-adjuvanted i.m. vaccines generated a mixed Th1–Th2 response at 6 and 19 weeks after the last immunization as shown by the production of IgG1 and IgG2a antibodies as well as the production of IL-2, IL-4 and IFN-γ by CD4+ and CD8+ T cells. HAI and MN titers were also higher in those groups when compared to the i.n. Protollin-adjuvanted and unadjuvanted groups. The Protollin-adjuvanted i.n. vaccine induced a more Th1 oriented response with a significant production of IgA in bronchoalveolar lavages. In ferrets, the AS03- and AS25-adjuvanted i.m. vaccines also induced higher HAI and MN titers compared to the other groups. These vaccines also significantly decreased viral titers after challenge with both the homologous A/Uruguay/716/2007 (H3N2) and the heterologous A/Perth/16/2009 (H3N2) strains. In conclusion, adjuvanted influenza vaccines elicited stronger humoral response in mice and conferred greater protection in naive ferrets than unadjuvanted ones. Interestingly, the AS25 adjuvant system containing monophosphoryl-lipid-A appears particularly promising for developing more potent inactivated influenza vaccines.  相似文献   

14.
Despite significant advancements in modern vaccinology, inactivated whole virus vaccines for foot-and-mouth disease (FMD) remain the mainstay for prophylactic and emergency uses. Many efforts are currently devoted to improve the immune responses and protective efficacy of these vaccines. Adjuvants, which are often used to potentiate immune responses, provide an excellent mean to improve the efficacy of FMD vaccines. This study aimed to evaluate three oil adjuvants namely: Montanide ISA-201, ISA-206 (SEPPIC, France) and GAHOL (an in-house developed oil-adjuvant) for adjuvant potential in inactivated FMD vaccine. Groups of cattle (n = 6) were immunized once intramuscularly with monovalent FMDV ‘O’ vaccine formulated in these adjuvants, and humoral (serum neutralizing antibody, IgG1 and IgG2) and cellular (lymphoproliferation) responses were measured. Montanide ISA-201 adjuvanted vaccine induced earlier and higher neutralizing antibody responses as compared to the two other adjuvants. All the adjuvants induced mainly serum IgG1 isotype antibody responses against FMDV. However, Montanide ISA-201 induced relatively higher IgG2 responses than the other two adjuvants. Lymphoproliferative responses to recall FMDV antigen were relatively higher with Montanide ISA-201, although not always statistically significant. On homologous FMDV challenge at 30 days post-vaccination, 100% (6/6) of the cattle immunized with Montanide-201 adjuvanted vaccine were protected, which was superior to those immunized with ISA-206 (66.6%, 4/6) or GAHOL adjuvanted vaccine (50%, 3/6). Virus replication following challenge infection, as determined by presence of the viral genome in oropharynx and non-structural protein serology, was lowest with Montanide ISA-201 adjuvant. Collectively, these results indicate that the Montanide ISA-201 adjuvanted FMD vaccine induces enhanced immune responses and protective efficacy in cattle.  相似文献   

15.
《Vaccine》2020,38(18):3464-3473
Leptospirosis is a global zoonosis causing significant economic losses for cattle production. Current cattle vaccines against leptospirosis need improvement to provide efficacy against multiple serovars, reduce shedding in urine, and to induce earlier and more robust immune responses. In this study, Leptospira borgpetersenii serovar Hardjo strain 203 antigen was combined with novel adjuvants (a biodegradable polyanhydride compressed rod implant (VPEAR), poly(diaminosulfide) microparticles, a water-oil-water emulsion adjuvant, and aluminum hydroxide) to develop novel vaccines. Cattle were immunized twice, at a 4 week interval, with inoculums containing adjuvants alone or leptospira antigens and immune responses were compared to responses of cattle receiving a commercial monovalent leptospirosis vaccine (Spirovac). All animals were inoculated with a single dose of Spirovac at 20 weeks to assess antigen recall responses. Serum antibody responses were increased (P > 0.05) at 8 and 20 weeks after vaccination in cattle receiving inoculums containing leptospira antigens combined with water-oil-emulsion, poly(diaminosulfide) microparticles (PNSN-MP), or aluminum hydroxide and in cattle vaccinated with Spirovac. Humoral responses were predominantly IgG1 isotypes. Antigen-specific proliferative responses were detected after initial vaccination in cattle vaccinated with Spirovac, PNSN-MP and water-oil-water treatments. Most proliferative responses occurring within CD4+ and gamma delta T cell populations expressing CD45RO and CD25 markers, a response consistent with an effector memory phenotype. Antigen-specific immune responses were not detected in cattle vaccinated with VPEAR after initial inoculation, but were detected in the antigen recall responses. PBMCs from cattle vaccinated with Spirovac, oil-water-oil, or PNSN-MP treatments had increased (P < 0.05) IL-17A release after in vitro stimulation with leptospirosis antigens, whereas all groups produced IFN-γ and IL-17A after in vitro stimulation during the antigen recall response. Our data demonstrates that combining leptospirosis antigens with these adjuvants enhances immunogenicity in cattle.Interpretative Summary: Vaccination of livestock is a key mechanism for minimizing transmission of leptospirosis, a zoonotic disease. Leptospirosis vaccines for cattle need to be improved to provide greater levels of protection from kidney colonization, better immune responses, and protection against multiple serovars. This could be accomplished using new vaccine adjuvants. In this study, several novel adjuvants were evaluated for their ability to induce effective immune responses in cattle to leptospira antigens as compared to currently available vaccines. Data suggested that vaccines containing biodegradable polymer microparticles and oil-emulsion adjuvants induced similar or greater immune responses as compared to a commercial vaccine. Our data suggest these new vaccine formulations warrant further investigation as new vaccine formulations for cattle and other livestock.  相似文献   

16.
There is a need for new adjuvants that will induce immune responses to subunit vaccines. We show that a short peptide, named Hp91, whose sequence corresponds to an area within the endogenous molecule high mobility group box (HMGB1) protein 1 potentiates cellular immune responses to peptide antigen and cellular and humoral immune responses to protein antigen in vivo. Hp91 promoted the in vivo production of the immunomodulatory cytokines, IFN-γ, TNF-α, IL-6, and IL-12 (p70), as well as antigen-specific activation of CD8+ T cells. These results demonstrate the ability of a short immunostimulatory peptide to serve as an adjuvant for subunit vaccines.  相似文献   

17.
The effectiveness of influenza vaccines is still controversial, and the role of adjuvants in such vaccines is briefly reviewed in this paper. Inactivated whole virus vaccines may include components that function as adjuvants, meaning that additive adjuvants are often not required. MF59 and AS03 showed higher adjuvanticity than aluminum salts in several clinical studies. Recent research has suggested that immune cell recruitment is the main mechanism underlying adjuvant actions in general, and that aluminum salts induce this recruitment via inflammation at the injected site. The aspect of how oil-based adjuvants, such as MF59 and AS03, recruit immune cells remains to be clarified.  相似文献   

18.
《Vaccine》2018,36(1):55-65
Saponin-based adjuvants are promising adjuvants that enhance both humoral and T-cell-mediated immunity. One of the most used natural products as vaccine adjuvants are Quillaja saponaria bark saponins and its fraction named Quil A®. Despite that, its use has been restricted for human use due to safety issues. As an alternative, our group has been studying the congener species Quillaja brasiliensis saponins and its performance as vaccine adjuvants, which have shown to trigger humoral and cellular immune responses comparable to Quil A® but with milder side effects. Here, we studied a semi purified aqueous extract (AE) and a previously little characterized saponin-enriched fraction (QB-80) from Q. brasiliensis as vaccine adjuvants and an inactivated virus (bovine viral diarrhea virus, BVDV) antigen co-formulated in experimental vaccines in mice model. For the first time, we show the spectra pattern of the Q. brasiliensis saponins by MALDI-TOF, a novel and cost-effective method that could be used to characterize different batches during saponins production. Both AE and QB-80 exhibited noteworthy chemical similarities to Quil A®. In addition, the haemolytic activity and toxicity were assessed, showing that both AE and QB-80 were less toxic than Quil A®. When subcutaneously inoculated in mice, both fractions promoted long-term strong antibody responses encompassing specific IgG1 and IgG2a, enhanced the avidity of IgG antibodies, induced a robust DTH reaction and significantly increased IFN-ɣ production in T CD4+ and T CD8+ cells. Furthermore, we have proven herein that AE has the potential to promote dose-sparing, substantially reducing the dose of antigen required for the BVDV vaccines and still eliciting a mixed Th1/Th2 strong immune response. Based on these results, and considering that AE is a raw extract, easier and cheaper to produce than commercially available saponins, this product can be considered as candidate to be escalated from experimental to industrial uses.  相似文献   

19.
《Vaccine》2015,33(8):1071-1076
Traditionally, synthetic peptide vaccines for infectious diseases and cancer require adjuvants to achieve optimal immunogenicity. Here we describe a novel method of peptide modification using a fluorocarbon chain which can substantially increase peptide-specific cellular immune responses in the absence of adjuvant. We demonstrate that fluorocarbon-modified peptides (fluoropeptides) derived from HIV, influenza and hepatitis C virus can significantly increase interferon gamma ELISpot responses against cytotoxic and T-helper epitopes compared to unmodified peptides or lipopeptides in mice. Increases in both T-helper1 and T-helper2 cytokines are observed. Fluoropeptides show enhanced ability of the antigen to persist at the site of administration and persistence is associated with a prolonged and elevated immune response. Additionally we demonstrate that fluoropeptides have increased proteolytic resistance thereby potentially supporting their increased half-life in vivo. Fluorocarbon-modification of peptides provides a valuable tool for increasing cellular immunogenicity of vaccines for infectious diseases and cancer without requirement for traditional adjuvants.  相似文献   

20.
《Vaccine》2020,38(18):3411-3421
BackgroundTo optimize vaccine implementation visits for young children, it could be efficient to administer the first RTS,S/AS01 malaria vaccine dose during the Expanded Programme on Immunization (EPI) visit at 6 months of age together with Vitamin A supplementation and the third RTS,S/AS01 dose on the same day as yellow fever (YF), measles and rubella vaccines at 9 months of age. We evaluated the safety and immunogenicity of RTS,S/AS01 when co-administered with YF and combined measles-rubella (MR) vaccines.MethodsIn this phase 3b, open-label, controlled study (NCT02699099), 709 Ghanaian children were randomized (1:1:1) to receive RTS,S/AS01 at 6, 7.5 and 9 months of age, and YF and MR vaccines at 9 or 10.5 months of age (RTS,S coad and RTS,S alone groups, respectively). The third group received YF and MR vaccines at 9 months of age and will receive RTS,S/AS01 at 10.5, 11.5 and 12.5 months of age (Control group). All children received Vitamin A at 6 months of age. Non-inferiority of immune responses to the vaccine antigens was evaluated 1 month following co-administration versus RTS,S/AS01 or EPI vaccines (YF and MR vaccines) alone using pre-defined non-inferiority criteria. Safety was assessed until Study month 4.5.ResultsNon-inferiority of antibody responses to the anti-circumsporozoite and anti-hepatitis B virus surface antigens when RTS,S/AS01 was co-administered with YF and MR vaccines versus RTS,S/AS01 alone was demonstrated. Non-inferiority of antibody responses to the measles, rubella, and YF antigens when RTS,S/AS01 was co-administered with YF and MR vaccines versus YF and MR vaccines alone was demonstrated. The safety profile of all vaccines was clinically acceptable in all groups.ConclusionsRTS,S/AS01 can be co-administered with Vitamin A at 6 months and with YF and MR vaccines at 9 months of age during EPI visits, without immune response impairment to any vaccine antigen or negative safety effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号