首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
2.
Autophagy represents an alternative tumor-suppressing mechanism that overcomes the dramatic resistance of malignant gliomas to radiotherapy and proapoptotic-related chemotherapy. This study reports that valproic acid (VPA), a widely used anti-epilepsy drug, induces autophagy in glioma cells. Autophagy, crucial for VPA-induced cell death, is independent of apoptosis, even though apoptotic machinery is proficient. Oxidative stress induced by VPA occurs upstream of autophagy. Oxidative stress also activates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, whereas blocking this pathway inhibits autophagy and induces apoptosis. VPA-induced autophagy cannot be alleviated by inositol, suggesting a mechanism different from that for lithium. Moreover, VPA potentiates autophagic cell death, but not apoptosis, when combined with other autophagy inducers such as rapamycin, Ly294002, and temozolomide in glioma cells both in vitro and in vivo, which may warrant further investigation toward possible clinical application in patients with malignant gliomas.  相似文献   

3.

Background

To evaluate whether PI3K/Akt pathway could effect on apoptosis and its mechanism in nasopharyngeal carcinoma cells.

Methods

The activation of the PI3K/Akt and its effect on CNE-2Z cells in vivo and in vitro was investigated by MTT assay, flow cytometry, western blot, ELISA, terminal deoxyribonucleotide transferase-mediated nick-end labeling assays (TUNEL), and immunohistochemical analyses, using PI3K inhibitor, LY294002.

Results

The results showed that LY294002 inhibited the phosphorylating of Akt (S473), cell proliferation, and induced apoptosis in CNE-2Z cells. However, our experiment results also demonstrated that apoptosis-induced LY294002 was directly regulated by caspase-9 activation pathway.

Conclusion

These data suggested that PI3K inhibitor, LY294002, induced apoptosis by caspase-9 activation pathway and might be as a potentially useful target for therapeutic intervention in nasopharyngeal carcinoma patients.  相似文献   

4.
The epithelial–mesenchymal transition (EMT), a crucial step in cancer metastasis, is important in transformed cancer cells with stem cell-like properties. In this study, we established a Snail-overexpressing cell model for non-small-cell lung cancer (NSCLC) and investigated its underlying mechanism. We also identified the downstream molecular signaling pathway that contributes to the role of Snail in regulating Nanog expression. Our data shows that high levels of Snail expression correlate with metastasis and high levels of Nanog expression in NSCLC. NSCLC cells expressing Snail are characterized by active EMT characteristics and exhibit an increased ability to migrate, chemoresistance, sphere formation, and stem cell-like properties. We also investigated the signals required for Snail-mediated Nanog expression. Our data demonstrate that LY294002, SB431542, LDN193189, and Noggin pretreatment inhibit Snail-induced Nanog expression during EMT. This study shows a significant correlation between Snail expression and phosphorylation of Smad1, Akt, and GSK3β. In addition, pretreatment with SB431542, LDN193189, or Noggin prevented Snail-induced Smad1 and Akt hyperactivation and reactivated GSK3β. Moreover, LY294002 pretreatment prevented Akt hyperactivation and reactivated GSK3β without altering Smad1 activation. These findings provide a novel mechanistic insight into the important role of Snail in NSCLC during EMT and indicate potentially useful therapeutic targets for NSCLC.  相似文献   

5.

Background

Chemoresistance is a serious problem in pancreatic cancer, but the mechanism of resistance and strategies against the resistance have not been elucidated. We examined the potential of the phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor LY294002 to enhance the anti-tumor effect of cisplatin and investigated the mechanism of chemoresistance in pancreatic cancer cells using a combination therapy of cisplatin and LY294002, both in vitro and in vivo.

Methods

Cisplatin and LY294002, individually or in combination, were given to AsPC-1 and PANC-1 cell lines. Tumor growth, DNA fragments, and Akt phosphorylation were examined in vitro. To examine the therapeutic effect of cisplatin and LY294002, individually or combination an AsPC-1 tumor xenograft model was prepared for in vivo study.

Results

Cisplatin induced growth inhibition and Akt phosphorylation in pancreatic cancer cells. LY294002 also inhibited cell proliferation but without showing Akt phosphorylation. However, the combination therapy markedly increased cleavage of caspase-3 and cytoplasmic histone-associated DNA fragments compared to the results with cisplatin alone. In the in vivo study, blocking the PI3K/Akt cascade with LY294002 increased the efficacy of cisplatin-induced inhibition of tumor growth in nude mice, suppressing half the tumor growth with cisplatin alone. There were no detectable side effects in mice treated with combination therapy.

Conclusion

Our studies suggest that the PI3K/Akt pathway plays an important role in cisplatin resistance of pancreatic cancer cells. The augmentation of cisplatin with PI3K/Akt inhibitor may resolve the chemoresistance problem of cisplatin, and this might be a plausible strategy for achieving tolerance for chemotherapeutic agents in pancreatic cancer therapy.  相似文献   

6.
The antitumor enzyme asparaginase, which targets essential amino acid L-asparagine and catalyzes it to L-aspartic acid and ammonia, has been used for years in the treatment of acute lymphoblastic leukemia (ALL), subtypes of myeloid leukemia and T-cell lymphomas, whereas the anti-chronic myeloid leukemia (CML) effect of asparaginase and its underlying mechanism has not been completely elucidated. We have shown here that asparaginase induced significant growth inhibition and apoptosis in K562 and KU812 cells. Apart from induction of apoptosis, we reported for the first time that asparaginase induced autophagic response in K562 and KU812 cells as evidenced by the formation of autophagosome, microtubule-associated protein light chain 3 (LC3)-positive autophagy-like vacuoles, and the upregulation of LC3-II. Further study suggested that the Akt/mTOR (mammalian target of rapamycin) and Erk (extracellular signal-regulated kinase) signaling pathway were involved in asparaginase-induced autophagy in K562 cells. Moreover, blocking autophagy using pharmacological inhibitors LY294002, chloroquine (CQ) and quinacrine (QN) enhanced asparaginase-induced cell death and apoptosis, indicating the cytoprotective role of autophagy in asparaginase-treated K562 and KU812 cells. Together, these findings provide a rationale that combination of asparaginase anticancer activity and autophagic inhibition might be a promising new therapeutic strategy for CML.  相似文献   

7.
The use of dietary bioactive compounds in chemoprevention can potentially reverse, suppress, or even prevent cancer progression. However, the effects of licochalcone A (LicA) on apoptosis and autophagy in cervical cancer cells have not yet been clearly elucidated. In this study, LicA treatment was found to significantly induce the apoptotic and autophagic capacities of cervical cancer cells in vitro and in vivo. MTT assay results showed dose- and time-dependent cytotoxicity in four cervical cancer cell lines treated with LicA. We found that LicA induced mitochondria-dependent apoptosis in SiHa cells, with decreasing Bcl-2 expression. LicA also induced autophagy effects were examined by identifying accumulation of Atg5, Atg7, Atg12 and microtubule-associated protein 1 light chain 3 (LC3)-II. Treatment with autophagy-specific inhibitors (3-methyladenine and bafilomycin A1) enhanced LicA-induced apoptosis. In addition, we suggested the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of mTOR pathway by LicA. Furthermore, the inhibition of PI3K/Akt by LY294002/si-Akt or of mTOR by rapamycin augmented LicA-induced apoptosis and autophagy. Finally, the in vivo mice bearing a SiHa xenograft, LicA dosed at 10 or 20 mg/kg significantly inhibited tumor growth. Our findings demonstrate the chemotherapeutic potential of LicA for treatment of human cervical cancer.  相似文献   

8.
9.

Background

The regulation of growth and apoptosis in K562 cells by human bone marrow mesenchymal stem cells (MSCs) from leukemia patients was investigated.

Methods

K562 cells were cocultured with leukemic MSCs under serum deprivation. Cell Counting Kit-8 (CCK-8), PI staining, Annexin V/PI binding and FACS assays were used to investigate cell proliferation, cell cycle status, and apoptosis of K562 cells cultures in the presence or absence of 10% serum. Western blotting was used to determine the levels of Akt, phosphorylated Akt (p-Akt), the BCL-2 family member Bad, and phosphorylated Bad (p-Bad) proteins in K562 cells after coculturing with MSCs. The effects of LY294002 (a specific inhibitor of PI3K) on protein expression were also determined.

Results

K562 cell proliferation was inhibited by coculture with MSCs and the dominant cell cycle was the G0-G1 phase. The proportion of apoptotic K562 cells was decreased and the levels of p-Akt and p-Bad were upregulated after exposing K562 cells to MSCs. However, when LY294002 was used, p-Akt and p-Bad proteins inK562 cells showed a significant reduction, while no distinct variation was seen in the nonphosphorylated Akt and Bad protein levels.

Conclusion

Leukemic MSCs can inhibit K562 cell expansion and modulate the cell cycle to a state of relative quiescence. This allows the K562 cells to endure adverse conditions such as serum starvation. The PI3K-Akt-Bad signaling pathway may be involved in this antiapoptotic process via phosphorylation of the Akt and Bad proteins. Blocking MSC-induced transduction of the PI3K-Akt-Bad pathway may be a potential strategy for a targeted therapy to combat leukemia.  相似文献   

10.
Pluripotent embryonic stem (ES) cells, a potential source of somatic precursors for cell therapies, cause tumors after transplantation. Studies of mammalian carcinogenesis using nuclear magnetic resonance (NMR) spectroscopy have revealed changes in the choline region, particularly increased phosphocholine (PCho) content. High PCho levels in murine ES (mES) cells have recently been attributed to cell pluripotency. The phosphoinositide 3-kinase (PI3K)/Akt pathway has been implicated in tumor-like properties of mES cells. This study aimed to examine a potential link between the metabolic profile associated with choline metabolism of pluripotent mES cells and PI3K/Akt signaling. We used mES (ES-D3) and murine embryonal carcinoma cells (EC-F9) and compared the metabolic profiles of 1) pluripotent mES (ESD0), 2) differentiated mES (ESD14), and 3) pluripotent F9 cells. Involvement of the PI3K/Akt pathway was assessed using LY294002, a selective PI3K inhibitor. Metabolic profiles were characterized in the extracted polar fraction by 1H NMR spectroscopy. Similarities were found between the levels of choline phospholipid metabolites (PCho/total choline and PCho/glycerophosphocholine [GPCho]) in ESD0 and F9 cell spectra and a greater-than five-fold decrease of the PCho/GPCho ratio associated with mES cell differentiation. LY294002 caused no significant change in relative PCho levels but led to a greater-than two-fold increase in PCho/GPCho ratios. These results suggest that the PCho/GPCho ratio is a metabolic trait shared by pluripotent and malignant cells and that PI3K does not underlie its development. It is likely that the signature identified here in a mouse model may be relevant for safe therapeutic applications of human ES cells.  相似文献   

11.

Background

Lewis y antigen is difucosylated oligosaccharide and is carried by glycoconjugates at cell surface. Elevated expression of Lewis y has been found in 75% of ovarian tumor, and the high expression level is correlated to the tumor''s pathological staging and prognosis. This study was to investigate the effect and the possible mechanism of Lewis y on the proliferation of human ovarian cancer cells.

Methods

We constructed a plasmid encoding α1,2-fucosyltransferase (α1,2-FT) gene and then transfected it into ovarian carcinoma-derived RMG-I cells with lowest Lewis y antigen expression level. Effect of Lewis y on cell proliferation was assessed after transfection. Changes in cell survival and signal transduction were evaluated after α-L-fucosidase, anti-Lewis y antibody and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.

Results

Our results showed that the levels of α1,2-FT gene and Lewis y increased significantly after transfection. The cell proliferation of ovarian carcinoma-derived RMG-I cells sped up as the Lewis y antigen was increased. Both of α-L-fucosidase and anti-Lewis y antibody inhibited the cell proliferation. The phosphorylation level of Akt was apparently elevated in Lewis y-overexpressing cells and the inhibitor of PI3K, LY294002, dramatically inhibited the growth of Lewis y-overexpressing cells. In addition, the phosphorylation intensity and difference in phosphorylation intensity between cells with different expression of α1,2-FT were attenuated significantly by the monoantibody to Lewis y and by the PI3K inhibitor LY294002.

Conclusions

Increased expression of Lewis y antigen plays an important role in promoting cell proliferation through activating PI3K/Akt signaling pathway in ovarian carcinoma-derived RMG-I cells. Inhibition of Lewis y expression may provide a new therapeutic approach for Lewis y positive ovarian cancer.  相似文献   

12.
The axon guidance cues netrin-1 has been reported to be associated with cancer progression in various types of human cancers. However, the underlying molecular mechanism of netrin-1-mediated metastasis remains obscure. In this study, we found that overexpression of netrin-1 promoted HCC cell migration and invasion as determined by transwell assay and 3D cell culture assay. However, netrin-1 knockdown inhibited these processes. Further investigation indicated that netrin-1 decreased the expression of Blood Vessel Epicardial Substance (BVES), which was down-regulated in HCC. Interestingly, LY294002, a special inhibitor to PI3K/AKT signaling which was determined as a downstream pathway of netrin-1, restored the reduction in BVES caused by netrin-1. In addition, BVES exhibited an opposite effect on HCC cell metastasis to that of netrin-1. Importantly, up-regulating BVES expression significantly attenuated netrin-1-enhanced migration and invasion, whereas silencing BVES expression rescued the metastatic phenotype in netrin-1 knockdown cells. Moreover, netrin-1 expression was negatively correlated with BVES in HCC tissues and cell lines with different metastatic potential. Taken together, these results reveal that netrin-1 promotes HCC cell metastasis by regulating BVES expression via AKT activation.  相似文献   

13.
Background Information: Previous studies have revealed that leptin may be involved in epithelial-mesenchymal transition (EMT), a crucial initiator of cancer progression to facilitate metastatic cascade, increase tumor recurrence, and ultimately cause poor prognosis. However, the underlying mechanism remains unclear. The aim of our present study was to investigate the effect of leptin on EMT of breast cancer cells and the underlying mechanism. Results: Our data demonstrated that leptin significantly increased the phosphorylation of STAT3, Akt, and ERK1/2, elevated the expression of IL-8, and induced breast cancer cells to undergo EMT. The effect of leptin on IL-8 could visibly abolished by the inhibitor of PI3K LY294002. In addition, leptin-induced EMT of breast cancer cells was blocked by anti-IL-8 antibodies. Examination of the expression of ObR, leptin, IL-8 and EMT-related biomarkers in patient specimens demonstrated that malignant breast carcinoma with lymph node metastases (LNM), which represents poor prognosis, expressed higher levels of ObR, leptin, IL-8 than other types of breast cancer, and displayed more obvious EMT transversion. In vivo xenograft experiment revealed that leptin signally promoted tumor growth and metastasis and increased the expressions of IL-8 and EMT-related biomarkers. Conclusions: Our results support that leptin-induced EMT in breast cancer cells requires IL-8 activation via the PI3K/Akt signal pathway.  相似文献   

14.
Esophageal cancer is the sixth most common cause of cancer-related deaths worldwide. Novel therapeutic intervention is urgently needed for this deadly disease. The functional role of PI3K/AKT pathway in esophageal cancer is little known. In this study, our results from 49 pairs of human esophageal tumor and normal specimens demonstrated that AKT was constitutively active in the majority (75.5%) of esophageal tumors compared with corresponding normal tissues. Inhibition of the PI3K/AKT pathway with specific inhibitors, wortmannin and LY294002, significantly reduced Bcl-xL expression, induced caspase-3-dependent apoptosis, and repressed cell proliferation and tumor growth in vitro and in vivo without obvious toxic effects. Moreover, significantly higher expression level of p-AKT was observed in fluorouracil (5-FU)-resistant esophageal cancer cells. Inactivation of PI3K/AKT pathway markedly increased the sensitivity and even reversed acquired resistance of esophageal cancer cells to chemotherapeutic drugs in vitro. More importantly, the resistance of tumor xenografts derived from esophageal cancer cells with acquired 5-FU resistance to chemotherapeutic drugs was significantly abrogated by wortmannin treatment in animals. In summary, our data support PI3K/AKT as a valid therapeutic target and strongly suggest that PI3K/AKT inhibitors used in conjunction with conventional chemotherapy may be a potentially useful therapeutic strategy in treating esophageal cancer patients.  相似文献   

15.
Diabetes is a risk factor for breast cancer development and is associated with poor prognosis for breast cancer patients. However, the molecular and biochemical mechanisms underlying the association between diabetes and breast cancer have not been fully elucidated. Here, we investigated estradiol response in MCF-7 breast cancer cells with or without chronic exposure to insulin. We found that insulin priming is necessary and specific for estradiol-induced cancer cell growth, and induces anaplerotic shunting of glucose into macromolecule biosynthesis in the estradiol treated cells. Treatment with ERK or Akt specific inhibitors, U0126 or LY294002, respectively, suppressed estradiol-induced growth. Interestingly, molecular analysis revealed that estradiol treatment markedly increases expression of cyclin A and B, and decreases p21 and p27 in the insulin-primed cells. In addition, estradiol treatment activated metabolic genes in pentose phosphate (PPP) and serine biosynthesis pathways in the insulin-primed cells while insulin priming decreased metabolic gene expression associated with glucose catabolism in the breast cancer cells. Finally, we found that anti-diabetic drug metformin and AMPK ligand AICAR, but not thiazolidinediones (TZDs), specifically suppress the estradiol-induced cellular growth in the insulin-primed cells. These findings suggest that estrogen receptor (ER) activation under chronic hyperinsulinemic condition increases breast cancer growth through the modulation of cell cycle and apoptotic factors and nutrient metabolism, and further provide a mechanistic evidence for the clinical benefit of metformin use for ER-positive breast cancer patients with diabetes.  相似文献   

16.
17.
18.
X N Meng  Y Jin  Y Yu  J Bai  G Y Liu  J Zhu  Y Z Zhao  Z Wang  F Chen  K-Y Lee    S B Fu 《British journal of cancer》2009,101(2):327-334

Background:

Focal adhesion kinase (FAK) is overexpressed in a variety of cancers, such as breast, colon, prostate, ovary, and lung cancers. However, the mechanism by which extracellular matrix fibronectin stimulates lung cancer cell migration and invasion through FAK remains to be investigated.

Methods:

The signalling pathways in fibronectin-mediated lung cancer cell migration and invasion were examined using western blotting. The metastasis function was detected by wound healing, migration and invasion assays. Further, RNA interference and kinase inhibitors were also used to study the downstream signals.

Results:

In this study, we examined the FAK signalling pathways in relation to calpain-2 and RhoA in fibronectin-mediated lung cancer cell migration and invasion. We found that A549 lung epithelial cells stimulated by fibronectin showed increased phosphorylation of FAK and its downstream targets, Src, ERK1/2, phosphatidylinositol 3′-kinase (PI3K), and Akt. Consistent with this observation, depletion of FAK by siRNA resulted in the inhibition of Src, ERK1/2, PI3K, and Akt activity. In addition, the Src inhibitor, PP2, blocked the phosphorylation of FAK, ERK1/2, PI3K, and Akt. Conversely, inhibition of MEK1/2 using PD98059 reduced the expression of matrix metalloproteinase-9 (MMP9) and calpain-2. The PI3K inhibitor, LY294002, further blocked the expression of MMP9 and RhoA. Inhibition of both MEK1/2 and PI3K caused reduced cell migration and invasion.

Conclusion:

Our data suggest that fibronectin-mediated activation of FAK that leads to lung cancer metastasis could occur through ERK or PI3K/Akt regulation of MMP9/calpain-2 or MMP9/RhoA activity, respectively.  相似文献   

19.
Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1–3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4–2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.  相似文献   

20.

Background:

Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown.

Methods:

We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed.

Results:

Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays.

Conclusion:

Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号