首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have shown that stromal fibroblasts have a more profound influence on the initiation and progression of carcinoma than was previously appreciated. This study aimed at investigating the reciprocal relationship between cancer cells and their associated fibroblasts at both the molecular and cellular level in oral squamous cell carcinoma (OSCC). To identify key molecular regulators expressed by carcinoma‐associated fibroblasts (CAF) that promote cancer cell invasion, microarrays were performed by comparing cocultured OSCC cells and CAF with monoculture controls. Microarray and real‐time PCR analysis identified marked upregulation of the chemokine (C‐C motif) ligand 7 (CCL7) in cocultured CAF. ELISA showed an elevated level of CCL7 secretion from CAF stimulated by coculture with OSCC cells. CCL7 promoted the invasion and migration of OSCC cells, and the invasiveness was inhibited by treatment with CCL7 neutralizing antibody. OSCC cells were shown to express CCR1, CCR2 and CCR3, receptors for CCL7, by RT‐PCR. In addition, treatment with anti‐CCR1 or anti‐CCR3 antibody inhibited CCL7‐induced OSCC cell migration, implicating that CCL7 promotes cancer cell migration through CCR1 and CCR3 on OSCC cells. Cytokine antibody array analysis of the supernatant from OSCC cell culture revealed that interleukin‐1α was an inducer of CCL7 secretion by CAF. This study confirms the reciprocal relationship of the molecular crosstalk regulating the invasion of OSCC and describes new potential targets for future therapy.  相似文献   

2.
The type of immune cells that are present within the tumor microenvironment can play a crucial role in the survival of patients. However, little is known about the dynamics of the tumor‐infiltrating immune cells during disease progression. We studied the immune cells that infiltrated the tumor tissues of ovarian cancer patients at different stages of disease. The early stages of development of ovarian carcinomas were characterized by a strong Th17 immune response, whereas in stage II patients, recruitment of high numbers of Th1 cells was observed. In disseminated tumors (Stages III–IV), we detected a dominant population of Helios+ activated regulatory T cells (Tregs) along with high numbers of monocytes/macrophages and myeloid dendritic cells (mDCs). Tumor‐infiltrating Tregs had markedly lower expression of CCR4 than circulating Tregs, and the numbers of tumor‐infiltrating Tregs significantly correlated with the levels of CCL22 in ovarian tumor cell culture supernatants, suggesting their recruitment via a CCR4/CCL22 interaction. CCL22 was mainly produced by tumor cells, monocytes/macrophages and mDCs in the primary ovarian tumors, and its expression markedly increased in response to IFNγ. Taken together, the specific recruitment of Tregs, probably triggered by inflammatory stimuli, leads to a significant immune suppression in the advanced stages of ovarian cancer.  相似文献   

3.
Cancer‐associated fibroblasts (CAF), derived from stroma of cancer tissues, interact with cancer cells and play an important role in cancer initiation, growth, and metastasis. Nab‐paclitaxel (nab‐PTX) is a 130 nm albumin‐binding paclitaxel and recommended for many types of cancer chemotherapy. The nab‐PTX stromal‐disrupting effect during pancreatic cancer treatment has been reported. The aim of the present study was to determine the role of nab‐PTX in cancer cells and CAF interaction. Cancer cells (MIA PaCa‐2 and Panc‐1) were cocultured with CAF or treated with CAF conditioned medium, after which their migration and invasion ability, epithelial‐mesenchymal transition (EMT)‐related marker expression and C‐X‐C motif chemokine 10 (CXCL10) expression and secretion were detected. Nab‐PTX treatment was carried out during the coculture system or during preparation of CAF conditioned medium. Then cancer cell migration and invasion ability, EMT‐related marker expression, CXCL10 expression and secretion, and interleukin‐6 (IL‐6) expression and secretion by CAF were checked After coculture with CAF, migration and invasion ability of cancer cells increased. CAF also downregulated E‐cadherin and upregulated N‐cadherin and vimentin expression in cancer cells. During coculture or stimulation with cancer cell‐cultured medium, CAF significantly increased IL‐6 expression and secretion. However, nab‐PTX in the coculture system canceled CAF‐induced migration and invasion promotion and EMT‐related gene changes. Moreover, nab‐PTX increased CXCL10 expression of cancer cells which blocked CAF IL‐6 expression and secretion. Nab‐PTX treatment could increase CXCL10 expression of cancer cells which blocks CAF cancer cell migration and invasion‐promoting effect by inhibiting IL‐6 expression.  相似文献   

4.
Esophageal cancer is currently one of the most fatal cancers. However, there is no effective treatment. Increasing evidence suggests that interleukin (IL)‐33 has a significant role in tumor progression and metastasis. Currently, the underlying cellular and molecular mechanism of IL‐33 in promoting esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we investigated whether IL‐33 could induce the epithelial‐mesenchymal transition (EMT) in ESCC. Interleukin‐33 expression was examined in ESCC and corresponding adjacent normal tissues by immunohistochemistry and quantitative real‐time PCR experiments. Elevated IL‐33 levels were observed in ESCC tissues. Further in vitro experiments were undertaken to elucidate the effect of IL‐33 on migration and invasion in KYSE‐450 and Eca‐109 esophageal cancer cells. Knockdown of IL‐33 decreased the metastasis and invasion capacity in esophageal cancer cells, whereas IL‐33 overexpression showed the opposite effect. We then screened CCL2 which is a downstream molecule of IL‐33, and proved that IL‐33 could promote tumor development and metastasis by recruiting regulatory T cells (Tregs) through CCL2, and IL‐33 regulated the expression of CCL2 through transforming growth factor‐β in Treg cells. Knockdown of IL‐33 decreased the development of human ESCC xenografts in BALB/c nude mice. Collectively, we found that the IL‐33/nuclear factor‐κB/CCL2 pathway played an essential role in human ESCC progress. Hence, IL‐33 should be considered as an effective therapy target for ESCC.  相似文献   

5.
Tumor‐induced immune suppression involves the accumulation of suppressive infiltrates in the tumor microenvironment such as regulatory T‐cells (Tregs). Previous studies demonstrated that NK‐dependant increases in CCL22 secretion selectively recruit Tregs toward murine lungs bearing Lewis Lung Carcinoma (LLC). To extend the in vitro studies, the present studies utilized in vivo depletion of NK cells to ascertain the contribution of NK‐derived CCL22 toward total CCL22 and subsequent Treg levels in both normal and LLC‐bearing lungs. However, NK depletion had the unexpected effect of increasing both CCL22 secretion and Treg levels in the lungs of NK‐depleted LLC‐bearing mice. This was concurrent with an increase in tumor burden. Flow cytometry and a series of both immunomagnetic and FACS isolations were used to identify the CCL22‐producing cellular fractions in LLC‐bearing lungs. A novel CD11b+CD11c+ cell population was identified that accumulates in large numbers in NK‐depleted LLC‐bearing lung tissue. These CD11b+CD11c+ cells secreted large amounts of CCL22 that may overcompensate for the loss of NK‐derived CCL22 in the lungs of NK‐depleted LLC‐bearing mice. Taken together, these data suggest that NK cells play both a positive and negative role in the regulation of CCL22 secretion and, in turn, the recruitment of Tregs toward LLC‐bearing lungs.  相似文献   

6.
Lymph node metastasis is a poor prognostic factor for patients with head and neck squamous cell carcinoma (HNSCC). However, its molecular mechanism has not yet been fully understood. In our study, we investigated the expression of CCR4 and its ligand CCL22 in the HNSCC tumor microenvironment and found that the CCR4/CCL22 axis was involved in lymph node metastasis of HNSCC. CCR4 was expressed in 20 of 31 (64.5%) human tongue cancer tissues, and its expression was significantly correlated with lymph node metastasis (p < 0.01) and lymphatic invasion (p < 0.05). CCR4 was expressed in three of five human HNSCC cell lines tested. CCR4+ HNSCC cells, but not CCR4? cells, showed enhanced migration toward CCL22, indicating that functional CCR4 was expressed in HNSCC cell lines. CCL22 was also expressed in cancer cells (48.4% of tongue cancer tissues) or CD206+ M2‐like macrophages infiltrated in tumors and draining lymph nodes. CCL22 produced by cancer cells or CD206high M2‐like macrophages increased the cell motility of CCR4+ HNSCC cells in vitro in an autocrine or paracrine manner. In the mouse SCCVII in vivo model, CCR4+ cancer cells, but not CCR4? cells, metastasized to lymph nodes which contained CCL22 producing M2‐like macrophages. These results demonstrate that lymph node metastasis of CCR4+ HNSCC is promoted by CCL22 in an autocrine or M2‐like macrophage‐dependent paracrine manner. Therefore, the CCR4/CCL22 axis may be an attractive target for the development of diagnostic and therapeutic strategies for patients with HNSCC.  相似文献   

7.
Patients with inflammatory bowel diseases often develop colon carcinoma. Combined treatment of azoxymethane (AOM) and dextran sulfate sodium (DSS) recapitulates colitis‐associated cancer in mice. AOM/DSS‐induced tumor formation was reduced in CCL3‐ or its specific receptor, CCR5‐deficient mice despite the presence of a massive infiltration of inflammatory cells. However, AOM/DSS‐induced type I collagen‐positive fibroblast accumulation in the colon was reduced in CCL3‐ or CCR5‐deficient mice. This was associated with depressed expression of heparin‐binding epidermal growth factor‐like growth factor (HB‐EGF), which is expressed mainly by fibroblasts. Moreover in vitro, CCL3 induced fibroblasts to proliferate and to enhance HB‐EGF expression. Furthermore, CCR5 blockade reduced tumor formation together with reduced fibroblast accumulation and HB‐EGF expression, even when administered after the development of multiple colon tumors. Thus, CCL3‐CCR5‐mediated fibroblast accumulation may be required, in addition to leukocyte infiltration, to induce full‐blown colitis‐associated carcinogenesis. Our studies shed light on a therapeutic potential of CCR5 antagonist for patients with colitis‐associated cancer.  相似文献   

8.
Cervical carcinogenesis is a consequence of persistent infection with high‐risk human papillomaviruses (HPVs). Recent studies indicate that HPV‐transformed cells actively instruct their microenvironment to promote carcinogenesis. Here, we demonstrate that cervical cancer cells activate monocytes to produce their own CCL2 for further monocyte recruitment and reprogram their function during differentiation and maturation to dendritic cells (DCs). Our data show that cervical cancer cells suppress the induction of the chemokine receptor CCR7 in phenotypically mature DCs and impair their migration toward a lymph node homing chemokine, required to initiate adaptive immune responses. We confirmed the presence of CD83+CCR7low DCs in cancer biopsies. The second factor essential for DC migration, matrix‐metalloproteinase MMP‐9, which also has vasculogenic and protumorigenic properties, is not suppressed but upregulated in immature as well as mature DCs. We identified interleukin‐6 (IL‐6) as a crucial cervical cancer cell‐derived mediator and nuclear factor kappaB (NF‐κB) as the central signaling pathway targeted in DCs. Anti‐IL‐6 antibodies reverted not only NF‐κB inhibition and restored CCR7‐dependent migration but also blocked MMP‐9 induction. This is the first report demonstrating the dissociation of CCR7 and MMP‐9 expression in phenotypically mature CD83+ DCs by cancer cells. Our results show that cervical cancer cells actively shape the local microenvironment. They induce the accumulation of myeloid cells and skew their function from immune activation to local production of protumorigenic MMP‐9. Neutralizing anti‐IL‐6 antibodies can counteract this functional dysbalance and should therefore be considered for adjuvant cervical cancer therapy.  相似文献   

9.
Recent studies have revealed that Foxp3+CD25+CD4+ regulatory T cells (Tregs), which are physiologically engaged in the maintenance of immunological self‐tolerance, play critical roles for the control of antitumor immune responses. For example, a large number of Foxp3+Tregs infiltrate into tumors, and systemic removal of Foxp3+Tregs enhances natural as well as vaccine‐induced antitumor T‐cell responses. Tregs are recruited to tumor tissues via chemokines, such as CCL22 binding to CCR4 expressed by Tregs. They appear to expand and become activated in tumor tissues and in the draining lymph nodes by recognizing tumor‐associated antigens as well as normal self‐antigen expressed by tumor cells. These results indicate that cancer vaccines targeting tumor‐associated self‐antigens may potentially expand/activate Tregs and hamper effective antitumor immune responses, and that tumor immunity can therefore be enhanced by depleting Tregs, attenuating Treg suppressive function, or rendering effector T cells refractory to Treg‐mediated suppression. Recent attempts have indeed demonstrated that combinations of monoclonal antibodies capable of modulating Treg functions synergistically enhance antitumor activity and are more effective than a single monoclonal antibody therapy. Combination therapy targeting a variety of molecules expressed in antigen‐presenting cells, effector T cells and Tregs is envisaged to be a promising anticancer immunotherapy.  相似文献   

10.

BACKGROUND:

Forkhead box P3 (FOXP3)‐positive regulatory T cells (Tregs) are key mediators of peripheral tolerance and suppress efficient antitumor responses. Prostaglandin E2 (PGE2) produced by inducible cyclooxygenase‐2 (COX‐2) can lead to Treg induction. COX‐2 expression has been linked to tumorigenesis and growth in various malignancies. The objective of the current study was to investigate whether Tregs infiltrate uveal melanomas (UMs) and whether their prevalence is linked to COX‐2 expression and the prediction of overall survival (OS).

METHODS:

One hundred patients who underwent enucleation after they were diagnosed with UM were included in the study. Immunohistochemical staining with monoclonal anti‐FOXP3, anti‐CD4, and anti‐COX‐2 antibodies was performed, and immunoreactivity was assessed. Correlations of COX‐2 expression with the presence of Tregs, established clinicopathologic parameters, and OS were evaluated in univariate and multivariate analyses.

RESULTS:

High expression of COX‐2 was predictive of shortened OS. FOXP3‐positive Tregs were detectable in 24% of UMs and were restricted to malignant tissue. The extent of COX‐2 expression was associated significantly with Treg prevalence (P = .004) and Treg intratumoral localization (P = .005). Intratumoral Tregs (but not the prevalence of Tregs) were independent marker for worse OS with a hazard ratio of 5.36 in patients with COX‐2–positive tumors.

CONCLUSIONS:

The current results demonstrated that high COX‐2 expression is associated with OS and Treg prevalence in UM. These findings are in line with the observations that COX‐2/PGE2 induces Tregs and that Tregs may alter antitumor responses, resulting in a negative effect on the clinical disease course. Intratumoral Tregs are an independent prognostic marker for COX‐2–positive UM, and these results put COX‐2 inhibitors and Treg depletion into the spotlight of potential novel treatment modalities for patients with UM. Cancer 2010. © 2010 American Cancer Society.  相似文献   

11.
Gastric cancer (GC) is one of the most frequent malignant tumors worldwide and is associated with high invasiveness, high metastasis and poor prognosis. Cancer‐associated fibroblasts (CAFs), residing around tumor cells in tumor stroma, are important modifiers of tumor initiation and progression. However, the molecular mechanisms by which CAF's modulate tumor development have yet not to be characterized in GC. Here we performed tissue assay analyses identifying that Lumican, an extracellular matrix protein, is highly expressed in human gastric CAFs and its expression is positively associated with depth of invasion, lymph node metastasis, TNM stage and poor survival rate of GC. Functional studies revealed that integrin β1‐FAK signaling pathways mediate the promoting effect of Lumican on GC cell proliferation, migration and invasion in vitro. In accordance with these observations, in GC cells co‐cultured with CAFs in which Lumican had been knocked down, decreased gastric tumor growth and metastasis in vivo was apparent. In summary, CAF‐derived Lumican contributes to tumorigenesis and metastasis of GC by activating the integrin β1‐FAK signaling pathway.  相似文献   

12.
Foxp3+ T cells (CD4+ Tregs and CD8+ Treg) have been demonstrated to play roles in the maintenance of tolerance after allogeneic hematopoietic stem cell transplantation (Allo‐HSCT). We have found that Foxp3+ γδTCR+ Treg cells (γδTregs) exerted regulatory functions. In the current study, patients were recruited and divided as non‐cGVHD, limited cGVHD and extensive cGVHD groups. Healthy volunteers were recruited as healthy group. Treg cells were evaluated by flow cytometry. Serum cytokine levels of IL‐2, tumour necrosis factor‐α, interferon‐γ and transforming growth factor‐β1 (TGF‐β1) were evaluated by ELISA. The results showed that percentages of CD4+ Tregs, CD8+ Tregs and γδTregs were all significantly increased in non‐cGVHD group compared with those in healthy group, limited cGVHD group and extensive cGVHD group. Moreover, compared with extensive cGVHD group, percentages of these three types of Tregs were significantly increased in limited cGVHD group. The levels of TGF‐β1 increased dramatically in non‐cGVHD group compared with other groups. Spearman's correlation analysis revealed that the increased levels of TGF‐β1 and IL‐2 were positively associated with increased Treg subsets, indicating that TGF‐β1 and IL‐2 participated in the expansion process of Foxp3+ Tregs in vivo. Our findings support that increasing the number of Tregs following allo‐HSCT would be a preferential strategy for controlling cGVHD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
14.
We have reported that interferon (IFN)‐α can attack cancer cells by multiple antitumor mechanisms including the induction of direct cancer cell death and the enhancement of an immune response in several pancreatic cancer models. However, an immunotolerant microenvironment in the tumors is often responsible for the failure of the cancer immunotherapy. Here we examined whether the suppression of regulatory T cells (Tregs) within tumors can enhance an antitumor immunity induced by an intratumoral IFN‐α gene transfer. First we showed that an intraperitoneal administration of an agonistic anti‐glucocorticoid induced TNF receptor (GITR) monoclonal antibody (mAb), which is reported to suppress the function of Tregs, significantly inhibited subcutaneous tumor growth in a murine pancreatic cancer model. The anti‐GITR mAb was then combined with the intratumoral injection of the IFN‐α‐adenovirus vector. The treatment with the antibody synergistically augmented the antitumor effect of IFN‐α gene therapy not only in the vector‐injected tumors but also in the vector‐uninjected tumors. Immunostaining showed that the anti‐GITR mAb decreased Foxp3+ cells infiltrating in the tumors, while the intratumoral IFN‐α gene transfer increased CD4+ and CD8+ T cells in the tumors. Therefore, the combination therapy strongly inclined the immune balance of the tumor microenvironment in an antitumor direction, leading to a marked systemic antitumor effect. The CCR5 expression on Tregs was downregulated in the antibody‐treated mice, which may explain the decrease of tumor‐infiltrating Tregs. The combination of Treg‐suppression by GITR mAb and the tumor immunity induction by IFN‐α gene therapy could be a promising therapeutic strategy for pancreatic cancer.  相似文献   

15.
Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T‐lymphocyte antigen‐4, interleukin (IL)‐2 consumption by high‐affinity IL‐2 receptors with high CD25 (IL‐2 receptor α‐chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4‐CCL17/22, CCR8‐CCL1, CCR10‐CCL28, and CXCR3‐CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine‐tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes.  相似文献   

16.
The vasohibin (VASH) family consists of two genes, VASH1 and VASH2. VASH1 is mainly expressed in vascular endothelial cells and suppresses angiogenesis in an autocrine manner, whereas VASH2 is mainly expressed in cancer cells and exhibits pro‐angiogenic activity. Employing adenomatous polyposis coli gene mutant mice, we recently reported on the role of Vash2 in the spontaneous formation of intestinal tumors. In this study, we used K19‐Wnt1/C2mE (Gan) mice and examined the role of Vash2 in spontaneous gastric cancer formation. Gan mice spontaneously develop gastric tumors by activation of Wnt and prostaglandin E2 signaling pathways in gastric mucosa after 30 weeks of age. Expression of Vash2 mRNA was significantly increased in gastric tumor tissues compared with normal stomach tissues. When Gan mice were crossed with the Vash2‐deficient (Vash2LacZ/LacZ) strain, gastric cancer formation was significantly suppressed in Vash2LacZ/LacZ Gan mice. Normal composition of gastric mucosa was partially maintained in Vash2LacZ/LacZ Gan mice. Knockout of Vash2 caused minimal reduction of tumor angiogenesis but a significant decrease in cancer‐associated fibroblasts (CAF) in tumor stroma. DNA microarray analysis and real‐time RT‐PCR showed that mRNA levels of epiregulin (Ereg) and interleukin‐11 (Il11) were significantly downregulated in gastric tumors of Vash2LacZ/LacZ Gan mice. Furthermore, conditioned medium of gastric cancer cells stimulated migration of and α‐smooth muscle actin expression in fibroblasts, whereas conditioned medium of VASH2 knockdown cells attenuated these effects in vitro. These results suggest that VASH2 plays an important role in gastric tumor progression via the accumulation of CAF accompanying upregulation of EREG and IL‐11 expression.  相似文献   

17.
A higher frequency of regulatory T cells (Tregs) has been observed in peripheral blood mononuclear cells (PBMC) of patients with different types of solid tumors and hematological malignancies as compared to healthy donors. In prostate cancer patients, Tregs in PBMC have been shown to have increased suppressive function. Tumor‐induced biological changes in Tregs may enable tumor cells to escape immunosurveillance. We performed genome‐wide expression analyses comparing the expression levels of more than 38,500 genes in Tregs with similar suppressive activity, isolated from the peripheral blood of healthy donors and patients with metastatic castration‐resistant prostate cancer (mCRPC). The differentially expressed genes in mCRPC Tregs are involved in cell cycle processes, cellular growth and proliferation, immune responses, hematological system development and function and the interleukin‐2 (IL‐2) and transforming growth factor‐β (TGF‐β) pathways. Studies revealed that the levels of expression of genes responsible for T‐cell proliferation (C‐FOS, C‐JUN and DUSP1) and cellular migration (RGS1) were greater in Tregs from mCRPC patients as compared to values observed in healthy donors. Increased RGS1 expression in Tregs from mCRPC patients suggests a decrease in these Tregs' migratory ability. In addition, the higher frequency of CD4+CD25highCD127 Tregs in the peripheral blood of mCRPC patients may be the result of an increase in Treg proliferation capacity. Results also suggest that the alterations observed in gene expression profiles of Tregs in mCRPC patients may be part of the mechanism of tumor escape from host immune surveillance.  相似文献   

18.
Involvement of the RGS17 oncogene in the promotion of non‐small‐cell lung cancer (NSCLC) has been reported, but the regulation mechanism in NSCLC remains unclear. MicroRNAs (miRNAs) negatively regulate gene expression, and their dysregulation has been implicated in tumorigenesis. To understand the role of miRNAs in Regulator of G Protein Signaling 17 (RGS17)‐induced NSCLC, we showed that miR‐203 was downregulated during tumorigenesis, and inhibited the proliferation and invasion of lung cancer cells. We then determined whether miR‐203 regulated NSCLC by targeting RGS17. To characterize the regulatory effect of miR‐203 on RGS17, we used lung cancer cell lines, A549 and Calu‐1, and the constructed miR‐203 and RGS17 overexpression vectors. The CCK8 kit was used to determine cell proliferation, and the Transwell® assay was used to measure cell invasion and migration. RT‐PCR, western blots, and immunofluorescence were used to analyze expression of miR‐203 and RGS17, and the luciferase reporter assay was used to examine the interaction between miR‐203 and RGS17. Nude mice were used to characterize in vivo tumor growth regulation. Expression of miR‐203 inhibited proliferation, invasion, and migration of lung cancer cell lines A549 and Calu‐1 by targeting RGS17. The regulatory effect of miR‐203 was inhibited after overexpression of RGS17. The luciferase reporter assay showed that miR‐203 downregulated RGS17 by direct integration into the 3′‐UTR of RGS17 mRNA. In vivo studies showed that expression of miR‐203 significantly inhibited growth of tumors. Taken together, the results suggested that expression of miR‐203 inhibited tumor growth and metastasis by targeting RGS17.  相似文献   

19.
20.
Sorafenib, a multitargeted antiangiogenic tyrosine kinase inhibitor, is the standard of care for patients with advanced hepatocellular carcinoma (HCC). Cumulating evidence suggests that sorafenib differentially affects immune cells; however, whether this immunomodulatory effect has any impact on antitumor immune responses is unknown. Using an orthotopic mouse model of HCC and tumor‐free mice, we investigated the effects of sorafenib on antitumor immunity and characterized the underlying mechanisms. Sorafenib treatment inhibited tumor growth and augmented antitumor immune responses in mice bearing established orthotopic HCC. The tumor‐specific effector T cell functions were upregulated, while the proportion of PD‐1‐expressing CD8+ T cells and regulatory T cells (Tregs) was reduced in tumor microenvironment of sorafenib‐treated mice. Mechanistically, the sorafenib‐mediated effects on Tregs could be independent of its direct tumor‐suppressing activities. Sorafenib treatment reduced Treg numbers by inhibiting their proliferation and inducing apoptosis. Moreover, sorafenib inhibited the function of Tregs, characterized by diminished expression of Treg‐associated molecules important for their function and by their impaired suppressive capacity. These data reveal that sorafenib treatment enhanced functions of tumor‐specific effector T cells as well as relieved PD‐1‐mediated intrinsic and Treg‐mediated non‐cell‐autonomous inhibitions in tumor microenvironment leading to effective antitumor immune responses. In addition to the well‐known tumor‐inhibiting activity of sorafenib, its enhancement of antitumor immunity may also contribute to the clinical efficacy. Our findings uncover a previously unrecognized mechanism of action of sorafenib and indicate that sorafenib represents a potential targeted agent suitable to be combined with immunotherapeutic approaches to treat cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号