首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-fluorouracil (5-FU) and its pro-drug capecitabine are widely used anticancer agents. Most 5-FU catabolism is dependent on dihydropyrimidine dehydrogenase (DPD) encoded by the DPYD gene, and DPYD variants that reduce DPD function increase 5-FU toxicity. Most DPD deficient patients are heterozygous and can be treated with reduced 5-FU dosing. We describe a patient with a genotype associated with near complete absence of DPD function, and severe and likely fatal toxicity with 5-FU treatment. The patient was treated effectively with alternative systemic therapy. Routine pretreatment DPYD genotyping is recommended by the European Medicines Agency, and guidelines for use of 5-FU in DPD deficient patients are available. However, outside the province of Quebec, routine pretreatment screening for DPD deficiency remains unavailable in Canada. It is likely our patient would have died from 5-FU toxicity under the current standard of care, but instead provides an example of the potential benefit of DPYD screening on patient outcomes.  相似文献   

2.
《Annals of oncology》2017,28(12):2915-2922
The fluoropyrimidine anticancer drugs, especially 5-fluorouracil (5-FU) and capecitabine, are frequently prescribed for several types of cancer, including breast, colorectal, head and neck and gastric cancer. In the current drug labels of 5-FU and capecitabine in the European Union and the United States, no adaptive dosing strategies are incorporated for polymorphic metabolism of 5-FU. Although treatment with fluoropyrimidines is generally well tolerated, a major clinical limitation is that a proportion of the treated population experiences severe, sometimes life-threatening, fluoropyrimidine-related toxicity. This toxicity is strongly affected by interindividual variability in activity of dihydropyrimidine dehydrogenase (DPD), the main metabolic enzyme for inactivation of fluoropyrimidines, with an estimated 3%–8% of the population being partially DPD deficient. A reduced functional or abrogated DPD enzyme is often caused by genetic polymorphisms in DPYD, the gene encoding for DPD, and heterozygous carriers of such DPYD polymorphisms have a partial DPD deficiency. When these partially DPD deficient patients are treated with a full dose of fluoropyrimidines, they are generally exposed to toxic levels of 5-FU and its metabolites, and the risk of developing severe treatment-related toxicity is therefore significantly increased.Currently, functional and clinical validity is well established for four DPYD variants (DPYD*2A, c.2846A>T, c.1679T>G and c.1236G>A), as those variants have retrospectively and in a large population study prospectively been shown to be associated with increased risk of fluoropyrimidine-associated toxicity. Patient safety of fluoropyrimidine treatment can be significantly improved by pre-emptive screening for DPYD genotype variants and dose reductions in heterozygous DPYD variant allele carriers, thereby normalizing 5-FU exposure. Based on the critical appraisal of currently available data, adjusting the labels of capecitabine and 5-FU by including recommendations on pre-emptive screening for DPYD variants and DPYD genotype-guided dose adjustments should be the new standard of care.  相似文献   

3.
《Clinical colorectal cancer》2022,21(3):e189-e195
BackgroundAdjuvant fluoropyrimidine-based chemotherapy substantially reduces recurrence and mortality after resection of stage 3 colon cancer. While standard doses of 5-fluorouracil and capecitabine are safe for most patients, the risk of severe toxicity is increased for the approximately 6% of patients with dihydropyimidine dehydrogenase (DPD) deficiency caused by pathogenic DPYD gene variants. Pre-treatment screening for pathogenic DPYD gene variants reduces severe toxicity but has not been widely adopted in the United States.MethodsWe conducted a cost-effectiveness analysis of DPYD genotyping prior to fluoropyrimidine-based adjuvant chemotherapy for stage 3 colon cancer, covering the c.1129-5923C>G (HapB3), c.1679T>G (*13), c.1905+1G>A (*2A), and c.2846A>T gene variants. We used a Markov model with a 5-year horizon, taking a United States healthcare perspective. Simulated patients with pathogenic DPYD gene variants received reduced-dose fluoropyrimidine chemotherapy. The primary outcome was the incremental cost-effectiveness ratio (ICER) for DPYD genotyping.ResultsCompared with no screening for DPD deficiency, DPYD genotyping increased per-patient costs by $78 and improved survival by 0.0038 quality-adjusted life years (QALYs), leading to an ICER of $20,506/QALY. In 1-way sensitivity analyses, The ICER exceeded $50,000 per QALY when the cost of the DPYD genotyping assay was greater than $286. In probabilistic sensitivity analysis using a willingness-to-pay threshold of $50,000/QALY DPYD genotyping was preferred to no screening in 96.2% of iterations.ConclusionAmong patients receiving adjuvant chemotherapy for stage 3 colon cancer, screening for DPD deficiency with DPYD genotyping is a cost-effective strategy for preventing infrequent but severe and sometimes fatal toxicities of fluoropyrimidine chemotherapy.  相似文献   

4.
Fluoropyrimidines are frequently used anti‐cancer drugs. It is known that patients with reduced activity of dihydropyrimidine dehydrogenase (DPD), the key metabolic enzyme in fluoropyrimidine inactivation, are at increased risk of developing severe fluoropyrimidine‐related toxicity. Upfront screening for DPD deficiency and dose reduction in patients with partial DPD deficiency is recommended and improves patient safety. For patients with complete DPD deficiency, fluoropyrimidine‐treatment has generally been discouraged. During routine pretreatment screening, we identified a 59‐year‐old patient with a sigmoid adenocarcinoma who proved to have a complete DPD deficiency. Genetic analyses showed that this complete absence of DPD activity was likely to be caused by a novel DPYD genotype, consisting of a combination of amplification of exons 17 and 18 of DPYD and heterozygosity for DPYD*2A. Despite absence of DPD activity, the patient was treated with capecitabine‐based chemotherapy, but capecitabine dose was drastically reduced to 150 mg once every 5 days (0.8% of original dose). Pharmacokinetic analyses showed that the area under the concentration‐time curve (AUC) and half‐life of 5‐fluorouracil were respectively tenfold and fourfold higher than control values of patients receiving capecitabine 850 mg/m2. When extrapolating from the dosing schedule of once every 5 days to twice daily, the AUC of 5‐fluorouracil was comparable to controls. Treatment was tolerated well for eight cycles by the patient without occurrence of capecitabine‐related toxicity. This case report demonstrates that a more comprehensive genotyping and phenotyping approach, combined with pharmacokinetically‐guided dose administration, enables save fluoropyrimidine‐treatment with adequate drug exposure in completely DPD deficient patients.  相似文献   

5.

Purpose

The fluoropyrimidines have been extensively used for almost five decade worldwide for the treatment of solid cancers. However, severe toxicity is a major clinical problem and has been reported in association with deleterious sequence variants in dihydropyrimidine dehydrogenase (DPD) coding-gene (DPYD), causing DPD deficiency. Genetic DPD deficiency has previously been considered to be insignificant in the British population. The study aim was to assess the contribution of deleterious DPYD sequence variants to fluoropyrimidine toxicity amongst British cancer patients.

Methods

Sequencing of the coding region of DPYD was undertaken in 47 patients (27 female, mean age 61 years), mainly with GI malignancy, experiencing grade 3 or 4 toxicity on fluoropyrimidines according to CTCAE criteria.

Results

Myelotoxicity (37.5%) and diarrhoea (37.5%) were the most frequent toxicities followed by mucositis (19.6%), hand–foot syndrome (3.6%) and neurotoxicity (1.8%). 4 of 47 (8.5%) patients carried the 1905+1G>A splice site variant. All 4 cases were female and 3 of 4 suffered severe diarrhoea. A further five cases carried other sequence variants (2846A>T n = 4, 1679T>G n = 1). In total, 9 (19%) patients carried deficiency associated DPYD sequence variants.

Conclusions

Contrary to previous estimates for a UK population, genetic DPD deficiency accounts for around 19% of cases of severe fluoropyrimidine toxicity. The influence of DPD deficiency is such that toxicity can be avoided by prior testing and appropriate 5-FU dose/regimen alteration.  相似文献   

6.
《Seminars in oncology》2017,44(1):13-23
5-Fluorouracil (5-FU)–based treatments can lead to early-onset severe (4%–5%) even fatal (0.3%) toxicities in patients with dihydropyrimidine dehydrogenase (DPD) deficiency. This multicenter prospective cohort study aimed to assess the clinical benefit of pretherapeutic screening for DPD deficiency using a multiparametric approach. Two parallel cohorts of patients treated with 5-FU–based chemotherapy for colorectal carcinoma were compared in a prospective nonrandomized study. In arm A, patients had DPD deficiency screening before treatment, whereas in arm B no pretherapy screening was performed. Dosing was based on 5-FU administration guidelines of each institution. DPD deficiency screening was performed using a combined multiparametric approach (5-FUODPM Tox). The frequency of early grade 4–5 toxic events potentially induced by 5-FU was compared in the two groups. At total of 1,142 patients (n = 1,116 evaluable) were enrolled. In arm A, out of 718 evaluable patients, nine grade 4 early toxicities potentially related to 5-FU were reported in nine patients (1.2%) with no toxic death despite one complete DPD deficiency and 24 partial deficiencies. The 24 patients with partial deficiency had safe pharmacokinetics (PK)-monitored 5-FU. In arm B, among 398 evaluable patients, 17 grade 4–5 toxic early events potentially related to 5-FU were reported in 12 patients (4.2%). The incidence of early severe toxicity was significantly higher in arm B (P = .0019), confirming the positive impact of pretherapeutic DPD assessment. The percent of patients with a toxicity grade 3 or higher observed in arm A was 10.8% (n = 78) compared to 17.55% (n = 69)  in arm B (P = .0497). The percentage of death was reduced from 2.5/1,000 in arm B to 0 in arm A. The time to occurrence of all grade ≥3 toxicities was determined in both arms and the difference between the two arms was significant (P = .047). Overall, one patient with complete DPD deficiency confirmed retrospectively died within 13 days from grade 5 multivisceral toxicity. Enrollment was prematurely closed after external experts’ decision. In conclusion, multiparametric pretherapeutic DPD deficiency screening significantly lowered the risk of early severe toxicity and avoided an early toxic death. This approach should be used for safe administration of 5-FU–based treatments.  相似文献   

7.
5-Fluorouracil (5-FU) is a key drug for the treatment of esophageal squamous cell carcinoma (ESCC); however, resistance to it remains a critical limitation to its clinical use. To clarify the mechanisms of 5-FU resistance of ESCC, we originally established 5-FU-resistant ESCC cells, TE-5R, by step-wise treatment with continuously increasing concentrations of 5-FU. The half maximal inhibitory concentration of 5-FU showed that TE-5R cells were 15.6-fold more resistant to 5-FU in comparison with parental TE-5 cells. TE-5R cells showed regional copy number amplification of chromosome 1p including the DPYD gene, as well as high mRNA and protein expressions of dihydropyrimidine dehydrogenase (DPD), an enzyme involved in 5-FU degradation. 5-FU treatment resulted in a significant decrease of the intracellular 5-FU concentration and increase of the concentration of α-fluoro-ureidopropionic acid (FUPA), a metabolite of 5-FU, in TE-5R compared with TE-5 cells in vitro. Conversely, gimeracil, a DPD inhibitor, markedly increased the intracellular 5-FU concentration, decreased the intracellular FUPA concentration, and attenuated 5-FU resistance of TE-5R cells. These results indicate that 5-FU resistance of TE-5R cells is due to the rapid degradation of 5-FU by DPD overexpression. The investigation of 5-FU-resistant ESCC with DPYD gene copy number amplification and consequent DPD overexpression may generate novel biological evidence to explore strategies against ESCC with 5-FU resistance.  相似文献   

8.
Dihydropyrimidine dehydrogenase (DPD, EC 1.3.1.2) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases, uracil and thymine, and is also known to be the key enzyme catalyzing the metabolic degradation of the anti-cancer drug 5-fluorouracil (5-FU). 5-FU has been commonly and widely used as a chemotherapeutic agent for the treatment of cancer of the gastrointestinal tract, breast, and head and neck. More than 85% of the administered 5-FU is catabolized by DPD.The clinical importance of DPD has been demonstrated with the identification of severe or lethal toxicity in patients administered 5-FU who are deficient in or have low levels of DPD activity in their peripheral blood mononuclear cells (PBMC). The importance of the role of DPD in 5-FU chemotherapy also has been shown by studies with competitive and irreversible DPD inhibitors. Population studies of DPD activity in PBMC were reported in healthy volunteers and cancer patients to evaluate the incidence of complete or partial DPD deficiency. In these studies, considerable variation was observed, and the frequency of low or deficient DPD activity (<30% and <10% of the mean activity of the normal population, respectively), was estimated to be 3-5% and 0.1%,respectively. We also found one healthy volunteer (0.7% of the population) with very low PBMC-DPD activity due to heterozygosity for a mutant allele of the DPYD gene in a population of 150 healthy Japanese volunteers. To date, at least 34 DPYD variants have been reported. However, genotyping of cancer patients with reduced or normal DPD activity showed that only 17% of those patients had a molecular basis for their deficient phenotype, which emphasized the complex nature of the molecular mechanisms controlling polymorphic DPD activity in vivo,suggesting that it is difficult to identify DPD deficiency by genotyping. Therefore, it is important to develop methods for identifying DPD deficiency in cancer patients by phenotyping before 5-FU treatment.  相似文献   

9.
5-Fluorouracil (5-FU) is an analogue of pyrimidine nucleosides that is widely used in the treatment of head and neck, breast, ovarian, and colon cancer. Stomatitis, diarrhea, dermatitis, and myelosuppression are the main toxicities of 5-FU. A less frequent side effect that is becoming more recognized is neurologic toxicity. Dihydropyrimidine dehydrogenase (DPD) is the rate-limiting enzyme in the catabolism of 5-FU. DPD deficiency follows an autosomal recessive pattern of inheritance, and its prevalence is estimated to be 3%. Cancer patients who are receiving 5-FU treatment and are DPD deficient can develop severe side effects. The neurologic toxicity can vary from being mild to severe and prolonged. We describe the side effects of 5-FU in a colon cancer patient who suffered severe mucositis, desquamating dermatitis, prolonged myelosuppression, and neurologic toxicity that required admission to the intensive care unit. The patient remained hospitalized for 3 months. Recovery from the side effects was complete 4 months after the last 5-FU treatment. Subsequent testing revealed that this patient has an extremely low level of DPD activity (0.015 nmol/min/mg protein; mean, 0.189 nmol/min/mg protein). Because neurologic toxicity is becoming more recognized and DPD affects the catabolism of 5-FU, we discuss management issues and the use of new DPD inhibitors. We also discuss whether screening for DPD deficiency is warranted to identify patients at risk for severe toxicities from 5-FU treatment.  相似文献   

10.
Patients with cancer with dihydropyrimidine dehydrogenase (DPD) deficiency are at significant risk for severe 5-fluorouracil (5-FU) toxicity, including the risk of death. Data regarding the toxicity of capecitabine, an oral fluoropyrimidine, in patients with DPD deficiency are scarce. From 2004 to 2005, 2 patients with gastrointestinal (GI) malignancies (of the pancreas and liver) experienced severe to even life-threatening toxicities during capecitabine therapy, which resulted in death for 1 patient. A DPD enzyme assay was performed as previously defined in our laboratory. Both patients were DPD deficient upon evaluation for toxicity. Capecitabine can lead to severe and sometimes life-threatening toxicities akin to toxicities caused by 5-FU in patients with DPD deficiency. In cases of unexpected severe toxicity during capecitabine treatment, DPD deficiency should be considered. We suggest that capecitabine should not be used in patients with DPD deficiency. Screening should be considered in view of the widespread use of capecitabine and 5-FU, the severe toxicity that can develop in patients with low DPD activity, and the prevalence of the mutation.  相似文献   

11.
Dihydropyrimidine dehydrogenase (DPD) is the rate-limiting enzyme in the degradation of pyrimidine bases. DPD is also responsible for the degradation of 5-fluorouracil (5-FU), which is the most frequently prescribed anticancer drug for the treatment of malignancies of the gastrointestinal tract. DPD could influence the antitumor effect and the adverse effects of 5-FU. High intratumoral DPD activity markedly decreases the cytotoxic effect of 5-FU. More than 80% of administered 5-FU is detoxified and excreted as F--alanine in urine. In 5-FU-based chemotherapy, escape from the degradation catalyzed by DPD is important. Recently, the dihydropyrimidine dehydrogenase gene (DPYD) was isolated, and its physical map and exon-intron organization were determined. To date, many DPYD variant alleles associated with a lack of DPD activity have been identified. In 5-FU-based cancer chemotherapy, severe toxicities were observed at higher rates in patients who were heterozygous for a mutant DPYD allele, compared with toxicities in patients who were homozygous for the wild DPYD allele. Furthermore, the adverse effects of 5-FU are often lethal for patients homozygous for the mutant DPYD allele. The apparently high prevalence of the DPYD mutation associated with lack of DPD activity in the normal population warrants genetic screening for the presence of these mutations in cancer patients before the administration of 5-FU. DPD inhibitory fluoropyrimidines (DIFs), including uracil plus tegafur (UFT) and tegafur plus 5-chloro-2,4-dihydroxypyridine plus potassium oxonate, in a molar ratio of 1:0.4:1 (TS-1), have recently been used in clinical settings. DIFs should provide chemotherapy that improves both quality of life and duration of survival.  相似文献   

12.
Background Inter-individual differences in dihydropyrimidine dehydrogenase (DPYD encoding DPD) and thiopurine S-methyltransferase (TPMT) activity are important predictors for fluoropyrimidine and thiopurine toxicity. While several variants in these genes are known to decrease enzyme activities, many additional genetic variations with unclear functional consequences have been identified, complicating informed clinical decision-making in the respective carriers.Methods We used a novel pharmacogenetically trained ensemble classifier to analyse DPYD and TPMT genetic variability based on sequencing data from 138,842 individuals across eight populations.Results The algorithm accurately predicted in vivo consequences of DPYD and TPMT variants (accuracy 91.4% compared to 95.3% in vitro). Further analysis showed high genetic complexity of DPD deficiency, advocating for sequencing-based DPYD profiling, whereas genotyping of four variants in TPMT was sufficient to explain >95% of phenotypic TPMT variability. Lastly, we provided population-scale profiles of ethnogeographic variability in DPD and TPMT phenotypes, and revealed striking interethnic differences in frequency and genetic constitution of DPD and TPMT deficiency.Conclusion These results provide the most comprehensive data set of DPYD and TPMT variability published to date with important implications for population-adjusted genetic profiling strategies of fluoropyrimidine and thiopurine risk factors and precision public health.Subject terms: Cancer genetics, Cancer genomics, Cancer genetics  相似文献   

13.

Purpose

5-fluorouracil (5-FU) has been widely used since the 1980s, and it remains the backbone of many chemotherapeutic combination regimens. However, its use is often limited by the occurrence of severe toxicity. Although several reports have shown the detrimental effect of some dihydropyrimidine dehydrogenase (DPYD) and thymidylate synthase (TYMS) gene polymorphisms in patients undergoing 5-FU-based treatment, they account for only a minority of toxicities.

Methods

Looking for new candidate genetic variants associated with 5-FU-induced toxicity, we used the innovative genotyping microarray Affymetrix Drug-Metabolizing Enzymes and Transporters (DMET)? Plus GeneChip that interrogates 1,936 genetic variants distributed in 231 genes involved in drug metabolism, excretion, and transport. To reduce variability, we analyzed samples from colorectal cancer patients who underwent fairly homogenous treatments (i.e., Machover or Folfox) and experienced G3 or G4 toxicity; control patients were matched for therapy and selected from those who did not disclose toxicity (G0–G1).

Results

Pharmacogenetic genotyping showed no significant difference in DPYD and TYMS genetic variants distribution between cases and controls. However, other polymorphisms could account for 5-FU-induced toxicity, with the CHST1 rs9787901 and GSTM3 rs1799735 having the strongest association.

Conclusions

Although exploratory, this study suggests that genetic polymorphisms not directly related to 5-FU pharmacokinetics and pharmacodynamics are involved in 5-FU-induced toxicity. Our data also indicates DMET? microarray as a valid approach to discover new genetic determinants influencing chemotherapy-induced toxicity.  相似文献   

14.

Background:

Genomic rearrangements at the fragile site FRA1E may disrupt the dihydropyrimidine dehydrogenase gene (DPYD) which is involved in 5-fluorouracil (5-FU) catabolism. In triple-negative breast cancer (TNBC), a subtype of breast cancer frequently deficient in DNA repair, we have investigated the susceptibility to acquire copy number variations (CNVs) in DPYD and evaluated their impact on standard adjuvant treatment.

Methods:

DPYD CNVs were analysed in 106 TNBC tumour specimens using multiplex ligation-dependent probe amplification (MLPA) analysis. Dihydropyrimidine dehydrogenase (DPD) expression was determined by immunohistochemistry in 146 tumour tissues.

Results:

In TNBC, we detected 43 (41%) tumour specimens with genomic deletions and/or duplications within DPYD which were associated with higher histological grade (P=0.006) and with rearrangements in the DNA repair gene BRCA1 (P=0.007). Immunohistochemical analysis revealed low, moderate and high DPD expression in 64%, 29% and 7% of all TNBCs, and in 40%, 53% and 7% of TNBCs with DPYD CNVs, respectively. Irrespective of DPD protein levels, the presence of CNVs was significantly related to longer time to progression in patients who had received 5-FU- and/or anthracycline-based polychemotherapy (hazard ratio=0.26 (95% CI: 0.07–0.91), log-rank P=0.023; adjusted for tumour stage: P=0.037).

Conclusion:

Genomic rearrangements in DPYD, rather than aberrant DPD protein levels, reflect a distinct tumour profile associated with prolonged time to progression upon first-line chemotherapy in TNBC.  相似文献   

15.
Purpose  Deficiency of dihydropyrimidine dehydrogenase (DPD) has been associated with severe fluoropyrimidines (FP) toxicity. Mutations in DPD-coding gene (DPYD) were shown to increase the risk of severe toxicity in FP-treated cancer patients. However, the majority of DPYD alterations characterized in these patients has been considered as polymorphisms and known deleterious mutations are rare and present in only limited subgroup of patients with high toxicity. Recently, the common fragile site FRA1E was mapped within DPYD locus but intragenic rearrangements in DPYD gene were not studied so far. Methods  We performed the analysis of intragenic rearrangements of DPYD using multiplex ligation-dependent probe amplification in 68 patients with high-grade gastrointestinal and/or hematological toxicity developed at the beginning of FP treatment. Results  We did not detect any deletion/duplication of one or more DPYD exons in analyzed patients. Conclusions  We assume that rearrangements in DPYD gene play insignificant role in the development of serious FP-related toxicity. I. Ticha, P. Kleiblova contributed equally to this work.  相似文献   

16.

Purpose  

Dihydropyrimidine dehydrogenase (DPD) deficiency can lead to severe toxicity in patients treated with standard doses of 5-fluorouracil (5-FU). Oral uracil administration and subsequent measurement of uracil and dihydrouracil (DHU) plasma concentrations might detect patients with DPD deficiency. This study compares the pharmacokinetics of uracil and DHU after oral uracil administration in subjects with normal and deficient DPD status.  相似文献   

17.
The identification of genetic factors associated with either responsiveness or resistance to 5-fluorouracil (5-FU) chemotherapy, as well as genetic factors predisposing patients to the development of severe 5-FU-associated toxicity, is increasingly being recognised as an important field of study. Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5-FU). Although the role of tumoral levels as a prognostic factor for clinical responsiviness has not been firmly established, there is ample evidence that a deficiency of DPD is associated with severe toxicity after the administration of 5-FU. Patients with a partial DPD deficiency have an increased risk of developing grade IV neutropenia. In addition, the onset of toxicity occurred twice as fast compared with patients with a normal DPD activity. To date, 39 different mutations and polymorphisms have been identified in DPYD. The IVS14+1G>A mutation proved to be the most common one and was detected in 24-28% of all patients suffering from severe 5-FU toxicity. Thus, a deficiency of DPD appears to be an important pharmacogenetic syndrome.  相似文献   

18.
Capecitabine is an oral prodrug of 5-fluorouracil (5-FU) and approved for treatment of various malignancies. Hereditary genetic variants may affect a drug’s pharmacokinetics or pharmacodynamics and account for differences in treatment response and adverse events among patients. In this review we present the current knowledge on genetic variants, commonly single-nucleotide polymorphisms (SNPs), tested in cohorts of cancer patients and possibly useful for prediction of capecitabine efficacy or toxicity. Capecitabine is activated to 5-FU by CES, CDA and TYMP, of which SNPs in CDA and CES2 were found to be associated with efficacy and toxicity. In addition, variants in genes of the 5-FU metabolic pathway, including TYMS, MTHFR and DPYD also influenced capecitabine efficacy and toxicity. In particular, well-known SNPs in TYMS and DPYD as well as putative DPYD SNPs had an association with clinical outcome as well as adverse events. Inconsistent findings may be attributable to factors related to ethnic differences, sample size, study design, study endpoints, dosing schedule and the use of multiple agents. Of the SNPs described in this review, dose reduction of fluoropyrimidines based on the presence of DPYD variants *2A (rs3918290), *13 (rs55886062), −2846A>T (rs67376798) and −1236G>A/HapB3 (rs56038477) has already been recommended. Other variants merit further validation to establish their definite role in explanation of interindividual differences in the outcome of capecitabine-based therapy.  相似文献   

19.

Background

Fluoropyrimidine drugs are widely used in head and neck cancer (HNC). DPD deficiency is a pharmacogenetics syndrome associated with severe/lethal toxicities upon 5-FU or capecitabine intake. We have developed a simple, rapid, and inexpensive functional testing for DPD activity, as a means to identify deficient patients and to anticipate subsequent 5-FU-related toxicities. We present here the impact of fluoropyrimidine dose tailoring based on DPD functional screening in a prospective, open, non-controlled study, both in term of reduction in severe toxicities and of treatment efficacy.

Methods

About 65 patients with HNC (59?±?9?years, 52M/13F, Prospective Group) were entered into the study. Screening for DPD deficiency was performed prior to the beginning of the chemotherapy or radiochemotherapy. DPD status was evaluated by monitoring U/UH2 ratio levels in plasma as a surrogate marker for enzymatic functionality. 5-FU doses were reduced according to the extent of the detected DPD impairment, and adjusted on the basis of age, general condition, and other clinical/paraclinical covariates, if required. Treatment-related toxicities and subsequent impact on treatment delay were carefully monitored next for comparison with a retrospective, Reference subset of 74 other patients with HNC (mean age: 59?±?10, 58M/16F, Reference Group), previously treated in the same institute with similar schedule but using standard 5-FU dosage.

Results

Thirty-one out of 65 patients (48%) were identified as mildly (28%) to markedly (20%) DPD deficient. Subsequently, dose reductions ranging from 10 to 100% with 5-FU were applied in those patients. In this group, six patients (9%) experienced severe toxicities, none of them being life threatening, and no toxic death was encountered. In comparison, 16 out of 74 patients (22%) of the Reference Group displayed severe side effects after standard 5-FU administration, 13% being life-threatening toxicities (e.g., G4 neutropenia?+?sepsis). Moreover, one toxic death was observed in this Reference Group. No postponement or cancelation of forthcoming chemoradiotherapy courses occurred in the Prospective Group, whereas treatment had to be disrupted in six patients (8%) from the Reference Group. No difference in first-line therapy efficacy was evidenced between the two subsets (78 vs. 79% response, P?=?0.790).

Conclusions

Although non-randomized, this study strongly suggests that prospective determination of DPD status has an immediate clinical benefit by reducing the drug-induced toxicities incidence in patients treated with 5-FU, allowing an optimal administration of several courses in a row, while maintaining efficacy. Our preliminary results thus advocate for systematic DPD screening in patients eligible for treatment with fluoropyrimidine drugs in HNC.  相似文献   

20.
The objective of this study was to determine whether genotyping of MIR27A polymorphisms rs895819A>G and rs11671784C>T can be used to improve the predictive value of DPYD variants to identify patients at risk of severe fluoropyrimidine‐associated toxicity (FP‐toxicity). Patients treated previously in a prospective study with fluoropyrimidine‐based chemotherapy were genotyped for rs895819 and rs11671784, and DPYD c.2846A>T, c.1679T>G, c.1129‐5923C>G and c.1601G>A. The predictive value of MIR27A variants for early‐onset grade ≥3 FP‐toxicity, alone or in combination with DPYD variants, was tested in multivariable logistic regression models. Random‐effects meta‐analysis was performed, including previously published data. A total of 1,592 patients were included. Allele frequencies of rs895819 and rs11671784 were 0.331 and 0.020, respectively. In DPYD wild‐type patients, MIR27A variants did not affect risk of FP‐toxicity (OR 1.3 for ≥1 variant MIR27A allele vs. none, 95% CI: 0.87–1.82, p = 0.228). In contrast, in patients carrying DPYD variants, the presence of ≥1 rs895819 variant allele was associated with increased risk of FP‐toxicity (OR 4.9, 95% CI: 1.24–19.7, p = 0.023). Rs11671784 was not associated with FP‐toxicity (OR 2.9, 95% CI: 0.47?18.0, p = 0.253). Patients carrying a DPYD variant and rs895819 were at increased risk of FP‐toxicity compared to patients wild type for rs895819 and DPYD (OR 2.4, 95% CI: 1.27–4.37, p = 0.007), while patients with a DPYD variant but without a MIR27A variant were not (OR 0.3 95% CI: 0.06?1.17, p = 0.081). In meta‐analysis, rs895819 remained significantly associated with FP‐toxicity in DPYD variant allele carriers, OR 5.4 (95% CI: 1.83–15.7, p = 0.002). This study demonstrates the clinical validity of combined MIR27A/DPYD screening to identify patients at risk of severe FP‐toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号