首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
DNA vaccine and dendritic cells (DCs)-based vaccine have emerged as promising strategies for cancer immunotherapy. Fms-like tyrosine kinase 3-ligand (Flt3L) and granulocyte-macrophage-colony-stimulating factor (GM-CSF) have been exploited for the expansion of DC. It was reported previously that combination of plasmid encoding GM-CSF with HER2/neu DNA vaccine induced predominantly CD4(+) T-cell-mediated antitumor immune response. In this study, we investigated the modulation of immune responses by murine Flt3L and GM-CSF, which acted as genetic adjuvants in the forms of bicistronic (pFLAG) and monocistronic (pFL and pGM) plasmids for HER2/neu DNA vaccine (pN-neu). Coexpression of Flt3L and GM-CSF significantly enhanced maturation and antigen-presentation abilities of splenic DC. Increased numbers of infiltrating DC at the immunization site, higher interferon-gamma production, and enhanced cytolytic activities by splenocytes were prominent in mice vaccinated with pN-neu in conjunction with pFLAG. Importantly, a potent CD8(+) T-cell-mediated antitumor immunity against bladder tumors naturally overexpressing HER2/neu was induced in the vaccinated mice. Collectively, our results indicate that murine Flt3L and GM-CSF genes coexpressed by a bicistronic plasmid modulate the class of immune responses and may be superior to those codelivered by two separate monocistronic plasmids as the genetic adjuvants for HER2/neu DNA vaccine.  相似文献   

2.
PURPOSE: The purpose of this study was to examine the tumor specificity, cytotoxicity, and granulocyte macrophage colony-stimulating factor expression of CG0070, a conditionally replicating oncolytic adenovirus, in human bladder transitional cell carcinoma (TCC) cell lines and determine its antitumor efficacy in bladder TCC tumor models. EXPERIMENTAL DESIGN: Virus yield and cytotoxicity assays were used to determine tumor specificity and virus replication-mediated cytotoxicity of CG0070 in a panel of human bladder TCC cell lines and primary cells in vitro. Two s.c. and one orthotopic bladder TCC xenograft tumor models were used to assess antitumor activity of CG0070. RESULTS: In a matched isogenic pair of cell lines with differing retinoblastoma (Rb) pathway status, CG0070 showed selective E1a and granulocyte macrophage colony-stimulating factor (GM-CSF) expression in Rb pathway-defective cells. CG0070 replicated in Rb-defective bladder TCC cell lines as efficiently as wild-type adenovirus but produced 100-fold less virus in normal human cells. CG0070 was up to 1,000-fold more cytotoxic in Rb pathway-defective bladder TCC cells in comparison with normal human cells. Antitumor activity of CG0070 was shown in two bladder TCC s.c. xenograft tumor models following intratumoral injections and intravesical treatment in an orthotopic xenograft tumor model when compared with PBS treatment. CONCLUSIONS: In vitro and in vivo studies showed the selective replication, cytotoxicity, GM-CSF production, and antitumor efficacy of CG0070 in several bladder TCC models, suggesting a potential utility of this oncolytic agent for the treatment of bladder cancer. Further studies are warranted to show the role of human GM-CSF in the antitumor efficacy of CG0070.  相似文献   

3.
Bernt KM  Ni S  Tieu AT  Lieber A 《Cancer research》2005,65(10):4343-4352
In this study, we identified murine breast cancer cell lines that support DNA replication of E1-deleted adenovirus vectors and which can be killed by an oncolytic adenovirus expressing adenovirus E1A and tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) in a replication-dependent manner (Ad.IR-E1A/TRAIL). We showed that systemic or intratumoral (i.t.) injection of adenovirus vectors into mice increases plasma levels of proinflammatory cytokines and chemokines, including TNF-alpha, INF-gamma, and MCP-1, which are potent inducers of dendritic cell maturation. Furthermore, we showed that in vivo expression of Flt3L from an adenovirus vector increases the number of CD11b+ and CD11c+ cells (populations that include dendritic cells) in the blood circulation. Based on these findings, we tested whether Ad.IR-E1A/TRAIL induced killing of tumor cells in combination with dendritic cell mobilization by Ad.Flt3L or, for comparison, Ad.GM-CSF would have an additive antitumor effect. As a model, we used immunocompetent C3H mice with syngeneic s.c. tumors derived from C3L5 cells. We found that vaccination of mice with C3L5 cells that underwent viral oncolysis in combination with Flt3L or granulocyte-macrophage colony-stimulating factor (GM-CSF) expression induces a systemic antitumor immune response. I.t. injection of the oncolytic and Flt3L expressing vectors into established tumors delayed tumor growth but did not cause efficient tumor elimination. This study shows the effectiveness of a combined oncolytic/immunostimulatory tumor therapy approach.  相似文献   

4.
PURPOSE: Although orthotopic animal models of cancer best reflect the disease in humans, a major drawback of these models is the inability to monitor tumor growth accurately. Our aims were to produce a bladder tumor cell line (MB49) that secreted human prostate-specific antigen (PSA), analyze the feasibility and accuracy of PSA as a biomarker for monitoring orthotopic bladder tumor growth, and evaluate the effectiveness of granulocyte macrophage colony-stimulating factor (GM-CSF) gene therapy using this model. EXPERIMENTAL DESIGN: PSA secretion was assessed after both s.c. and orthotopic implantation of MB49-PSA cells in C57BL/6 mice. PSA levels in mouse serum and urine samples were monitored at 2- to 3-day intervals by ELISA. Using the orthotopic model, mice with confirmed tumors were given liposome-mediated GM-CSF gene therapy twice a week for 3 weeks intravesically and PSA levels monitored. RESULTS: The MB49-PSA cells behaved similarly as the parental cell line and produced high levels of PSA both in vitro and in vivo. In the s.c. model, the level of PSA produced correlated with tumor volume (r = 0.96). In the orthotopic model, PSA could be detected in serum and urine on the fourth day after implantation. PSA levels over the treatment period indicated that tumor growth was inhibited by GM-CSF gene therapy. Up to 50% of the treated mice were cured. Cytokine array analysis revealed that GM-CSF gene therapy induced the production of other cytokines and chemokines. CONCLUSIONS: MB49 cells modified to secrete PSA are a reliable method to evaluate therapeutic modalities for bladder cancer.  相似文献   

5.
Waller EK 《The oncologist》2007,12(Z2):22-26
GM-CSF stimulates the differentiation of hematopoietic progenitors to monocytes and neutrophils, and reduces the risk for febrile neutropenia in cancer patients. GM-CSF also has been shown to induce the differentiation of myeloid dendritic cells (DCs) that promote the development of T-helper type 1 (cellular) immune responses in cognate T cells. This review summarizes some of the immunological effects of GM-CSF relevant to antitumor immunity in cancer patients. GM-CSF has been used to augment the activity of rituximab in patients with follicular lymphoma and to induce autologous antitumor immunity in patients with hormone-refractory prostate cancer. GM-CSF causes upregulation of costimulatory molecule expression on leukemia blasts in vitro, enhancing their ability to present antigen to allogeneic T cells, and, in combination with interferon-alpha, can induce antitumor immune responses in patients whose acute leukemia has relapsed following allogeneic hematopoietic progenitor cell transplant. Tumor cells engineered to secrete GM-CSF are particularly effective as antitumor vaccines, and the addition of GM-CSF to standard vaccines may increase their effectiveness by recruiting DCs to the site of vaccination. However, a significant limitation in the use of GM-CSF as an immunostimulatory agent is that objective antitumor responses are infrequent, and are often not durable. Effective and durable antitumor immunity will likely require novel methods to eliminate counterregulatory immune responses that limit activation and expansion of cytotoxic T cells with antitumor activity.  相似文献   

6.
Huang TT  Yen MC  Lin CC  Weng TY  Chen YL  Lin CM  Lai MD 《Cancer science》2011,102(12):2214-2220
Liver cancer is one of the most malignant cancers in the world and has a high rate of metastasis. Therefore, development of a novel therapy for liver cancer is a critical issue. Indoleamine 2,3-dioxygenase (IDO) is known as a negative immune regulator in dendritic cells. Our previous study demonstrated that skin delivery of IDO short hairpin RNA (shRNA) induced antitumor immunity in subcutaneous bladder and colon tumor models. Because the immunological environment is quite different between skin and liver, it is essential to evaluate whether skin delivery of IDO shRNA is an effective treatment in metastatic and orthotopic animal tumor models. In the present study, IDO shRNA inhibited tumor growth in subcutaneous, metastatic and orthotopic liver tumor models. The cytotoxicity of splenocytes was significantly elevated in mice treated with IDO shRNA in the orthotopic and metastatic tumor models. Interleukin (IL)-12 and interferon (IFN)-gamma mRNA expression were upregulated while IL-10 was downregulated in the inguinal lymph nodes, which were collected from IDO shRNA-treated mice. Similar results were observed in the spleens of mice inoculated with IDO shRNA by gene gun. The results indicate that skin administration of IDO shRNA is an effective therapy in orthotopic and metastatic liver cancer animal models. Indoleamine 2,3-dioxygenase shRNA might be a potential new treatment for liver cancer in the future.  相似文献   

7.
Prostate adenocarcinoma, treated with localized tumor hyperthermia (LTH), can potentially serve as a source of tumor antigen, where dying apoptotic/necrotic cells release tumor peptides slowly over time. In addition, LTH-treated cells can release heat shock proteins that can chaperone antigenic peptides to antigen-presenting cells, such as dendritic cells. We attempted to discern whether sequential LTH and intratumoral dendritic cell and/or systemic granulocyte macrophage colony-stimulating factor (GM-CSF) would activate antitumor immune response in a syngeneic murine model of prostate cancer (RM-1). Palpable RM-1 tumors, grown in the distal appendage of C57BL/6 male mice, were subjected to LTH (43.7 degrees C for 1 h) x 2, separated by 5 days. Following the second LTH treatment, animals received either PBS or dendritic cells (2 x 10(6)) intratumorally (every 3 days for three injections). Separate cohorts also received i.v. injection of recombinant adenovirus-expressing murine GM-CSF (AdGMCSF), 1 day after LTH. Control animals received AdenoLacZ or AdenoGFP. Intratumoral dendritic cell injection induced tumor-specific T-helper cell activity (IFNgamma ELISPOTS) and CTL activity, which was further augmented by AdGMCSF, indicating amplification of tumor-specific TH1 immunity. The combination of LTH, AdGMCSF, and intratumoral dendritic cell injection resulted in significant tumor growth delays when compared with animal cohorts that received LTH alone. These results support an in situ autovaccination strategy where systemic administration of GM-CSF and/or intratumoral injection of autologous dendritic cells, when combined with LTH, could be an effective treatment for local and systemic recurrence of prostate cancer.  相似文献   

8.
We previously demonstrated increased numbers of CD34(+) progenitor cells in the peripheral blood of tumor bearers. Also demonstrated was the feasibility of chemoattracting these cells by sponge implants containing VEGF. The present study used a murine Lewis lung carcinoma (LLC) model to test if CD34(+) cells that are chemoattracted to a tumor excision site can be differentiated in situ into dendritic cells and whether this leads to increased local immune reactivity. After surgically excising established LLC tumors, mice received at the excision site gelatin sponge implants containing VEGF to chemoattract CD34(+) cells, and/or GM-CSF plus SCF to induce CD34(+) cell differentiation into dendritic cells. In some studies, lysates of GFP-transfected LLC cells (LLC(GFP)) were also included in the implants as a source of tumor antigen. After 2 weeks, implants and local lymph nodes were removed and analyzed. Implants containing VEGF, GM-CSF/SCF or VEGF/GM-CSF/SCF had a higher proportion of CD34(+) cells compared to control implants. However, the number of dendritic cells was higher in implants containing GM-CSF/SCF or VEGF/GM-CSF/SCF than those containing either VEGF or diluent. Regional lymph node from mice containing GM-CSF/SCF or VEGF/GM-CSF/SCF implants showed increased dendritic cell levels. However, when lysates from LLC(GFP) were added to the implants, the highest proportion of dendritic cells associated with GFP was in lymph nodes of mice containing GM-CSF/SCF implants. Lymph node cells from mice with GM-CSF/SCF or VEGF/GM-CSF/SCF had a higher level of proliferation and IFN-gamma secretion in response to in vitro LLC lysate challenge, with the greatest response being from lymph node cells of mice with GM-CSF/SCF implants. These results suggest the feasibility of using GM-CSF/SCF-containing implants to increase dendritic cell levels, uptake of tumor antigens, trafficking to lymph nodes and stimulation of immune reactivity at tumor excision sites with residual tumor.  相似文献   

9.
Recent understanding of the molecular events crucial in overcoming immunosuppressive tumor microenvironments and generating effective antitumor immunity provides us with the wreath opportunity to manipulate genes that have a key role in antitumor immune responses. Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-12 (IL-12) are two indispensable cytokines for activating dendritic cells and boosting the strong immune responses against cancer. In this review, we describe the antitumor mechanisms and clinical application of gene-modified tumor cells and dendritic cells to secrete GM-CSF or IL-12, respectively, in various preclinical and clinical settings. The principles operative in these vaccination strategies may prove applicable to other immunotherapy strategies, especially in combination with other therapeutic modalities, such as chemotherapy and targeted therapy. ( Cancer Sci 2009)  相似文献   

10.
Song W  Levy R 《Cancer research》2005,65(13):5958-5964
Dendritic cells are potent antigen-presenting cells that can induce both immune responses and tolerance depending on their state of activation. Immunologic tolerance to established tumors is a major impediment for the development of effective cancer immunotherapy. Dendritic cells may be deficient in number or in function at the tumor site. To address this problem, we evaluated the ability of immature na?ve dendritic cells to induce an antitumor immune response when injected directly into a murine B-cell lymphoma. Mice with advanced transplanted syngeneic tumor were given intratumoral injections of bone marrow-derived dendritic cells. Intratumoral dendritic cell injection alone had no antitumor effect. Systemic chemotherapy alone resulted in only transient tumor regression. However, the intratumoral injection of dendritic cells after chemotherapy led to complete, long-term tumor regression in the majority of treated mice. This dendritic cell-mediated antitumor effect was systemic, resulting in simultaneous elimination of the tumor at second uninjected sites. In addition, it resulted in long-term memory with resistance to tumor rechallenge. Both CD4+ and CD8+ T cells are necessary for the antitumor effect. Furthermore, tumors that occasionally recurred in mice with initial complete tumor regression could be retreated by the same combined chemoimmunotherapy approach. These results show that immunotherapy can succeed in the setting of advanced lymphoma if dendritic cells are restored and loaded with tumor antigens in situ at a single tumor site.  相似文献   

11.
12.
The recent clinical application of granulocyte macrophage colony-stimulating factor (GM-CSF)-transduced autologous tumor vaccines revealed substantial antitumor activity and valuable clinical results. However, for these vaccines to be optimally effective, the antitumor efficacies must be improved. Recently, Sendai virus (SeV) vectors, which are cytoplasmic RNA vectors, have emerged as safe vectors with high gene transduction. In the current study, the in vivo therapeutic antitumor efficacies of irradiated GM-CSF-transduced mouse renal cell carcinoma (RENCA) vaccine cells mediated by either fusion gene-deleted non-transmissible SeV encoding mouse GM-CSF (SeV/dF/G) or adenovirus (E1, E3 deleted serotype 5 adenovirus) encoding mouse GM-CSF (AdV/G) (respectively described as irRC/SeV/GM or irRC/AdV/GM) were compared in RENCA-bearing mice. The results showed that the antitumor effect was equivalent between irRC/SeV/GM and irRC/AdV/GM cells, even though the former produced less GM-CSF in vitro. The cell numbers of activated (CD80(+), CD86(+), CD80( (+) )CD86(+)) dendritic cells in lymph nodes from mice treated with irRC/AdV/GM or irRC/SeV/GM cells were increased significantly compared with those of mice treated with the respective controls, at both the earlier and later phases. In an in vitro cytotoxicity assay, splenocytes harvested from mice treated with both irRC/SeV/GM and irRC/AdV/GM cells showed tumor-specific responses against RENCA cells. The restimulated splenocytes harvested from mice treated with irRC/SeV/GM or irRC/AdV/GM cells produced significantly higher levels of interleukin-2, interleukin-4, and interferon-gamma compared with their respective controls (P < 0.05). Furthermore, vaccination with irRC/AdV/GM or irRC/SeV/GM cells induced significantly enhanced recruitment of the cytolytic effectors of CD107a(+)CD8(+) T cells and CD107a(+) natural killer cells into tumors compared with those induced by their respective controls (P < 0.05). Taken together, our results suggest that the SeV/dF/G vector is a potential candidate for the production of effective autologous GM-CSF-transduced tumor vaccines in clinical cancer immune gene therapy.  相似文献   

13.
Chang CL  Tsai YC  He L  Wu TC  Hung CF 《Cancer research》2007,67(20):10047-10057
Ovarian cancer is responsible for the highest mortality rate among patients with gynecologic malignancies. Therefore, there is an emerging need for innovative therapies for the control of advanced ovarian cancer. Immunotherapy has emerged as a potentially plausible approach for the control of ovarian cancer. In the current study, we have generated heat shock protein 70 (Hsp70)-secreting murine ovarian cancer cells that express luciferase (MOSEC/luc). Hsp70 has been shown to target and concentrate antigenic peptides in dendritic cells and is also able to activate dendritic cells. We characterized the antigen-specific immune response and the antitumor effect of the MOSEC/luc cells expressing Hsp70 using noninvasive luminescence images to measure the amount of ovarian tumors in the peritoneal cavity of mice. We found that mice challenged with MOSEC/luc cells expressing Hsp70 generate significant antigen-specific CD8+ T-cell immune responses. Furthermore, we also found that mice vaccinated with irradiated MOSEC/luc cells expressing Hsp70 generate significant therapeutic effect against MOSEC/luc cells. In addition, we have shown that CD8+, natural killer, and CD4+ cells are important for protective antitumor effect generated by irradiated tumor cell-based vaccines expressing Hsp70. Moreover, we also found that CD40 receptor is most important, followed by Toll-like receptor 4 receptor, for inhibiting in vivo tumor growth of the viable MOSEC/luc expressing Hsp70. Thus, the use of Hsp70-secreting ovarian tumor cells represents a potentially effective therapy for the control of lethal ovarian cancer.  相似文献   

14.
AIMS AND BACKGROUND: The purpose of the study was to test the immunological and clinical effects of infusions of dendritic cells pulsed with autologous tumor lysate in patients with advanced cancer. PATIENTS AND METHODS: Peripheral blood mononuclear cells from 15 patients with metastatic cancer (melanoma in 10, lung cancer in 2, renal cell carcinoma in 1, sarcoma in 1, breast cancer in 1) were harvested by leukapheresis after mobilization with GM-CSF (5 microg/kg/day s.c. for 4 days). Mononuclear cells were separated and cultured in GM-CSF (1000 U/ml) and interleukin-4 (1000 U/ml) for 7 days. Phenotype was assessed by 2-color flow cytometry and immunocytochemistry. On day 6, dendritic cells were pulsed with 1 g of fresh autologous tumor lysate for 24 h and infused intravenously. Interleukin-2 (6 million IU), interferon a (4 million IU) and GM-CSF (400 microg) were injected s.c. daily for 10 days beginning on the day of dendritic cell infusion. Treatment was repeated every 21 days for 3 courses. RESULTS: The morphology, immunocytochemistry and phenotype of cultured cells was consistent with dendritic cells: intense positivity for HLA-DR and CD86, with negativity for markers of other lineages, including CD3, CD4, CD8 and CD14. More than 5 x 10(7) dendritic cells were injected in all patients. Nine patients developed >5 mm delayed type cutaneous hypersensitivity reactions to tumor lysate+/-GM-CSF after the first immunization (larger than GM-CSF in all cases). Median delayed type cutaneous hypersensitivity to lysate +/- GM-CSF was 3 cm after the third immunization. One melanoma patient with skin, liver, lung and bone metastases had a partial response lasting 8 months (followed by progression in the brain). Seven patients had stable disease for >3 months, and 7 had progression. CONCLUSIONS: Infusion of tumor lysate-pulsed dendritic cells induces a strong cell-mediated antitumor immune reaction in patients with advanced cancer and has some clinical activity.  相似文献   

15.
Tumor vaccines have shown promise in early clinical trials. Among them, tumor cells genetically engineered to secrete biologically active granulocyte-macrophage colony-stimulating factor (GM-CSF) can generate a systemic antitumor immune response. Although the minimal required GM-CSF dose produced by modified tumor cells to achieve a measurable antitumor effect is well known, no data examined whether an upper therapeutic limit may exist for this vaccination strategy. Because recent data demonstrate an immunosuppressive effect of GM-CSF produced by growing tumors, we thus sought to determine whether high GM-CSF doses administered in a vaccine formulation could impair antitumor immunity. Using a vaccine strategy involving a GM-CSF-producing bystander cell line (B78H1-GM) admixed with autologous tumor, we assessed the impact of varying doses of GM-CSF while maintaining a constant antigen dose. Our results defined a threshold above which a GM-CSF-based vaccine not only lost its efficacy, but more importantly for its clinical implications resulted in substantial immunosuppression in vivo. Above this threshold, GM-CSF induced Gr1+/CD11b+ myeloid suppressor cells that substantially impaired antigen-specific T-cell responses and adversely affected antitumor immune responses in vivo. The dual effects of GM-CSF are mediated by the systemic and not local concentration of this cytokine. Myeloid suppressor cell-induced immunosuppression is mediated by nitric oxide production via inducible nitric oxide synthase (iNOS) because the specific iNOS inhibitor, l-NMMA, restored antigen-specific T-cell responsiveness in vitro. Taken together, our data demonstrated the negative impact of supra-therapeutic vaccine doses of GM-CSF and underscored the importance of identifying these critical variables in an effort to increase the therapeutic efficacy of tumor vaccines.  相似文献   

16.
Dendritic cells play significant roles in the development and maintenance of antitumor immune responses. Therapeutic recruitment of dendritic cells into the tumor microenvironment has the potential to result in enhanced antitumor T-cell cross-priming against a broad array of naturally processed and presented tumor-associated antigens. We have observed that the treatment of BALB/c mice bearing syngeneic CMS4 sarcomas with the combination of recombinant Flt3 ligand and recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) for five sequential days is sufficient to optimize the number of tumor-infiltrating dendritic cells (TIDC). However, despite the significant increase in the number of TIDCs, the therapeutic benefit of Flt3 ligand and GM-CSF treatment is minimal. Therapy-associated TIDCs do not exhibit a "suppressed" or "suppressor" phenotype in vitro, and their enhanced numbers in cytokine-treated mice were associated with increased levels of peripheral antitumor CD8(+) T effector cells and with an augmented population of CD8(+) tumor-infiltrating lymphocytes (TIL). These data suggest that Flt3 ligand + GM-CSF therapy of murine tumors fails at a mechanistic point that is downstream of specific T-cell priming by therapy-induced TIDCs and the recruitment of these T cells into the tumor microenvironment. Based on the enhanced infiltration of tumors by CD4(+)CD25(+) TIL in Flt3 ligand + GM-CSF-treated mice, this could reflect the dominant influence of regulatory T cells in situ.  相似文献   

17.
This study was designed to determine whether the vaccination of genetically modified dendritic cells (DCs) simultaneously expressing carcinoembryonic antigen (CEA), granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin 12 (IL-12) can overcome the peripheral T-cell tolerance to CEA and thereby elicit a therapeutic response in CEA transgenic mice. CEA transgenic mice were immunized once by subcutaneous injection with DCs adenovirally transduced with CEA and T helper-type 1 cytokine genes. The cytotoxic activity of spleen cells against CEA-expressing tumors, MC38-CEA, in the mice immunized with DCs expressing CEA (DC-AxCACEA) was higher than that in those immunized with DCs-AxCALacZ (p < 0.0001), and was augmented by the cotransduction with the GM-CSF/IL-12 gene (p < 0.05). The vaccination with DC-AxCACEA/GM-CSF/IL-12 could elicit a more potent therapeutic immunity than the vaccination with DC-AxCACEA in subcutaneous tumor models (p < 0.0001), and 4 of 5 mice showed a complete eradication of the subcutaneous tumors in these vaccination groups. Even in a large tumor model, this vaccination therapy completely eliminated the subcutaneous tumors in all mice. This antitumor activity mostly vanished with the depletion of CD8(+) T cells and NK cells in vivo and was completely abrogated with the depletion of CD4(+) T cells. A histopathological examination showed no evidence of an autoimmune reaction. No other adverse effects were observed. This vaccination strategy resulted in the generation of highly efficient therapeutic immune responses against MC38-CEA in the absence of autoimmune responses and demonstrated no adverse effects, and may therefore be useful for future clinical applications as a cancer vaccine therapy.  相似文献   

18.
Tumor-induced immunosuppression is one of the crucial mechanisms of tumor evasion of immune surveillance. It contributes greatly to the failure of cancer vaccines. Immature myeloid cells (ImCs) play an important role in tumor-induced immunosuppression. These cells accumulate in large numbers in tumor-bearing hosts and directly inhibit T-cell functions via various mechanisms. In this study, we tried to eliminate ImCs in an attempt to improve antitumor response. In vivo administration of all-trans-retinoic acid (ATRA) dramatically reduced the presence of ImCs in all tested tumor models. This effect was not because of a direct antitumor effect of ATRA or decreased production of growth factors by tumor cells. Experiments with adoptive transfer demonstrated that ATRA differentiated ImC in vivo into mature dendritic cells, macrophages, and granulocytes. Decreased presence of ImC in tumor-bearing mice noticeably improved CD4- and CD8-mediated tumor-specific immune response. Combination of ATRA with two different types of cancer vaccines in two different tumor models significantly prolonged the antitumor effect of the treatment. These data suggest that elimination of ImC with ATRA may open an opportunity to improve the effect of cancer vaccines.  相似文献   

19.
目的研究GM-CSF基因修饰的肿瘤细胞作为瘤苗的可行性.方法通过逆转录病毒载体,将小鼠GM-CSF基因导入EL-4淋巴瘤细胞中,研究EL-4/GM-CSF在同系C57BL/6小鼠中的成瘤性及其诱导抗肿瘤免疫的效果.结果EL-4/GM-CSF细胞在小鼠中的成瘤性下降,50%小鼠无瘤生存.射线灭活的EL-4/GM-CSF瘤苗能有效地保护野生型肿瘤细胞的攻击,在肿瘤生长的早期对实验性荷瘤小鼠进行治疗,能延长荷瘤宿主的存活时间(33.1±1.8)与对照组EL-4/Wt(23.2±1.5天)比差异有显著性(P<0.01).基因修饰的瘤苗作用明显增强.结论GM-CSF基因修饰的肿瘤疫苗可诱导较强的抗肿瘤免疫反应,导致肿瘤的部分根除,本实验为基因修饰的肿瘤疫苗的临床应用提出了一定的实验依据.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号