首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IDH‐mutant gliomas are classified into astrocytic or oligodendroglial tumors by 1p/19q status in the WHO 2016 classification, with the latter presenting with characteristic morphology and better prognosis in general. However, the morphological and genetic features within each category are varied, and there might be distinguishable subtypes. We analyzed 170 WHO grade II‐IV gliomas resected in our institution. 1p/19q status was analyzed by microsatellite analysis, and genetic mutations were analyzed by next‐generation sequencing and Sanger sequencing. For validation, the Brain Lower Grade Glioma dataset of The Cancer Genome Atlas was analyzed. Of the 42 grade III IDH‐mutated gliomas, 12 were 1p‐intact/19q‐intact (anaplastic astrocytomas [AA]), 7 were 1p‐intact/19q‐loss (AA), and 23 showed 1p/19q‐codeletion (anaplastic oligodendrogliomas). Of the 88 IDH‐wild type glioblastomas (GBMs), 14 showed 1p‐intact/19q‐loss status. All of the seven 1p‐intact/19q‐loss AAs harbored TP53 mutation, but no TERT promotor mutation. All 19q‐loss AAs had regions presenting oligodendroglioma‐like morphology, and were associated with significantly longer overall survival compared to 19q‐intact AAs (= .001). This tendency was observed in The Cancer Genome Atlas Lower Grade Glioma dataset. In contrast, there was no difference in overall survival between the 19q‐loss GBM and 19q‐intact GBM (= .4). In a case of 19q‐loss AA, both oligodendroglial morphology and 19q‐loss disappeared after recurrence, possibly indicating correlation between 19q‐loss and oligodendroglial morphology. We showed that there was a subgroup, although small, of IDH‐mutated astrocytomas harboring 19q‐loss that present oligodendroglial morphology, and also were associated with significantly better prognosis compared to other 19q‐intact astrocytomas.  相似文献   

2.
Purpose

The TruSight Tumor 170 (TST-170) panel consists of a DNA workflow for the identification of single-nucleotide variants, small insertions and deletions, and copy number variation, as well as a panel of 55 genes for a RNA workflow for the identification of splice variants and gene fusions. To date, the application of TST-170 in diffuse gliomas (DGs) has not been described.

Methods

We analyzed 135 samples of DG, which were diagnosed by WHO criteria based on histological features and conventional molecular tests including immunostaining, 1p/19q FISH, and analysis of MGMT methylation and TERT promoter mutation.

Results

A total of 135 cases consisted of 38 IDH-mutant [17 astrocytoma (AC), 13 oligodendroglioma (OD) and eight glioblastoma (GBM)], 87 IDH-wildtype (six AC, three OD and 78 GBM), and 10 diffuse midline glioma, H3K27M-mutant. DNA analysis enabled the detection of all mutations identified in these samples by conventional techniques, and the results were highly comparable to the known mutations in each subtype. RNA analysis detected four fusion genes including PTPRZ1MET, FGFR3TACC3, FAM131BBRAF, and RETCCDC6 and one splicing variant (EGFR vIII mutant). Clustered copy number loss in 1p and 19q loci genes were detected in 1p/19q-codeleted OD.

Conclusions

The application of TST-170 panel based NGS in clinical and laboratory setting is expected to improve diagnostic accuracy and prognostication. Most benefits are expected in IDH-wildtype DG, a group of genetically heterogenous tumors harboring DNA sequence changes, copy number alterations, and fusions in a large number of oncogenes and tumor suppressor genes.

  相似文献   

3.

Background

Diagnosis of WHO grade III anaplastic gliomas does not always correspond to its clinical outcome because of the isocitrate dehydrogenase (IDH) gene status. Anaplastic gliomas without IDH mutation result in a poor prognosis, similar to grade IV glioblastomas. However, the malignant features of anaplastic gliomas without IDH mutation are not well understood. The aim of this study was to examine anaplastic gliomas, in particular those without IDH mutation, with regard to their malignant features, recurrence patterns, and association with glioma stem cells.

Methods

We retrospectively analyzed 86 cases of WHO grade III anaplastic gliomas. Data regarding patient characteristics, recurrence pattern, and prognosis were obtained from medical records. We examined molecular alterations such as IDH mutation, 1p19q loss, TP53 mutation, MGMT promoter methylation, Ki67 labeling index, and CD133, SOX2, and NESTIN expression.

Results

Of the 86 patients with anaplastic gliomas, 58 carried IDH mutation, and 40 experienced recurrence. The first recurrence was local in 25 patients and distant in 15. Patients without IDH mutation exhibited significantly higher CD133 and SOX2 expression (P = .025 and .020, respectively) and more frequent distant recurrence than those with IDH mutation (P = .022).

Conclusions

Patients with anaplastic gliomas without IDH mutation experienced distant recurrence and exhibited glioma stem cell markers, indicating that this subset may share some malignant characteristics with glioblastomas.  相似文献   

4.
Metabolomics has recently undergone rapid development; however, metabolomic analysis in cerebrospinal fluid (CSF) is not a common practice. We analyzed the metabolite profiles of preoperative CSF samples from 32 patients with histologically confirmed glioma using gas chromatography/mass spectrometry (GC/MS). We assessed how alterations in the metabolite levels were related to the World Health Organization (WHO) tumor grades, tumor location, gadolinium enhancement on magnetic resonance imaging (MRI), and the isocitrate dehydrogenase (IDH) mutation status. Sixty-one metabolites were identified in the CSF from glioma patients using targeted, quantitative and non-targeted, semi-quantitative analysis. The citric and isocitric acid levels were significantly higher in the glioblastoma (GBM) samples than in the grades I–II and grade III glioma samples. In addition, the lactic and 2-aminopimelic acid levels were relatively higher in the GBM samples than in the grades I–II glioma samples. The CSF levels of the citric, isocitric, and lactic acids were significantly higher in grade I–III gliomas with mutant IDH than in those with wild-type IDH. The tumor location and enhancement obtained using MRI did not significantly affect the metabolite profiles. Higher CSF levels of lactic acid were statistically associated with a poorer prognosis in grades III–IV malignant gliomas. Our study suggests that the metabolomic analysis of CSF from glioma patients may be useful for predicting the glioma grade, metabolic state, and prognosis of gliomas.  相似文献   

5.
The isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes mutate frequently in gliomas, and it has become increasingly apparent that IDH mutation status accounts for much of the prognostic information previously rendered by histological grading. Most glioblastomas (90–95%) are IDH wild-type and most lower-grade diffuse gliomas (80%) are IDH-mutant. We examine here how IDH mutation status interacts with treatments known to influence survival (surgery, chemotherapy and radiotherapy) in patients with gliomas, and the impact of the IDH mutations on patients’ survival after such treatments. IDH mutations is associated with more complete surgical resection of enhancing disease, and with a better response to RT. In addition, there is increasing clinical evidence that, in certain contexts, IDH mutations predict chemotherapeutic sensitivity. Mutations in IDH and other genes are beginning to drive decisions on therapy for diffuse gliomas and will likely allow tailoring of treatment by molecular profile in the future.  相似文献   

6.
The Hedgehog (Hh) pathway regulates the growth of a subset of adult gliomas and better definition of Hh-responsive subtypes could enhance the clinical utility of monitoring and targeting this pathway in patients. Somatic mutations of the isocitrate dehydrogenase (IDH) genes occur frequently in WHO grades II and III gliomas and WHO grade IV secondary glioblastomas. Hh pathway activation in WHO grades II and III gliomas suggests that it might also be operational in glioblastomas that developed from lower-grade lesions. To evaluate this possibility and to better define the molecular and histopathological glioma subtypes that are Hh-responsive, IDH genes were sequenced in adult glioma specimens assayed for an operant Hh pathway. The proportions of grades II–IV specimens with IDH mutations correlated with the proportions that expressed elevated levels of the Hh gene target PTCH1. Indices of an operational Hh pathway were measured in all primary cultures and xenografts derived from IDH-mutant glioma specimens, including IDH-mutant glioblastomas. In contrast, the Hh pathway was not operational in glioblastomas that lacked IDH mutation or history of antecedent lower-grade disease. IDH mutation is not required for an operant pathway however, as significant Hh pathway modulation was also measured in grade III gliomas with wild-type IDH sequences. These results indicate that the Hh pathway is operational in grades II and III gliomas and glioblastomas with molecular or histopathological evidence for evolvement from lower-grade gliomas. Lastly, these findings suggest that gliomas sharing this molecularly defined route of progression arise in Hh-responsive cell types.  相似文献   

7.
8.
Epithelial membrane protein-2 (EMP2) expression is noted in many human cancers. We evaluated EMP2 as a biomarker in gliomas. A large tissue microarray of lower grade glioma (WHO grades II–III, n = 19 patients) and glioblastoma (GBM) (WHO grade IV, n = 50 patients) was stained for EMP2. EMP2 expression was dichotomized to low or high expression scores and correlated with clinical data. The mean EMP2 expression was 1.68 in lower grade gliomas versus 2.20 in GBMs (P = 0.01). The percentage of samples with high EMP2 expression was greater in GBMs than lower grade gliomas (90.0 vs. 52.6%, P = 0.001). No significant difference was found between median survival among patients with GBM tumors exhibiting high EMP2 expression and survival of those with low EMP2 expression (8.38 vs. 10.98 months, P = 0.39). However, EMP2 expression ≥2 correlated with decreased survival (r = ?0.39, P = 0.001). The EMP2 expression level also correlated with Ki-67 positivity (r = 0.34, P = 0.008). The mortality hazard ratio for GBM patients with EMP2 score of 3 or higher was 1.92 (CI 0.69–5.30). Our findings suggest that elevated EMP2 expression is associated with GBM. With other biomarkers, EMP2 may have use as a molecular target for the diagnosis and treatment of gliomas.  相似文献   

9.
Adult grade II low-grade gliomas (LGG) are classified according to the WHO as astrocytomas, oligodendrogliomas or mixed gliomas. TP53 mutations and 1p19q codeletion are the main molecular abnormalities recorded, respectively, in astrocytomas and oligodendrogliomas and in mixed gliomas. Although IDH mutations (IDH1 or IDH2) are recorded in up to 85?% of low-grade gliomas, IDH negative gliomas do occur. We have searched for p53 expression, 1p19q codeletion and IDH status (immunohistochemical detection of the common R132H IDH1 mutation and IDH direct sequencing). Internexin alpha (INA) expression previously recorded to be associated with 1p19q codeletion (1p19q+) gliomas was also analysed. Low-grade gliomas were accurately classified into four groups: group 1, IDH+/p53?/1p19q?; group 2, IDH+/p53?/1p19q+; group 3, IDH+/p53+/1p19q?; and group 4, triple negative gliomas. In contrast to the WHO classification, this molecular classification predicts overall survival on uni- and multivariate analysis (P?=?0.001 and P?=?0.007, respectively). Group 4 carries the worst prognosis and group 2 the best. Interestingly, p53?+/INA? expression predicts lack of 1p19q codeletion (specificity 100?%, VPP 100?%). The combined use of these three molecular markers allow for an accurate prediction of survival in LGG. These findings could significantly modify LGG classification and may represent a new tool to guide patient-tailored therapy. Moreover, immunohistochemical detection of p53, INA and mR132H IDH1 expression could represent an interesting prescreening test to be performed before 1p19q codeletion, IDH1 minor mutation and IDH2 mutation detection.  相似文献   

10.

BACKGROUND.

The IDH1 gene, which encodes isocitrate dehydrogenase 1, is frequently mutated in gliomas and acute myeloid leukemia. The single‐nucleotide polymorphism (SNP) (reference SNP no. rs11554137:C>T) located on IDH1 codon 105 has been associated with a poor outcome in patients with acute myeloid leukemia but has not been investigated in patients with gliomas.

METHODS.

The IDH1 codon 105 SNP was genotyped first in a series of 952 patients with grade 2 through 4 gliomas and was correlated with outcomes and tumor genomic profile. Then, it was genotyped in 2 validations sets of 306 patients with glioblastoma (GBM) and 591 patients with glioma.

RESULTS.

The minor allele codon 105 glycine (GGT) SNP (IDH1105GGT) was identified in 98 of 952 patients (10.3%) and was not associated with the codon 132 (IDH1132) mutation. Patients who had GMB with the IDH1105GGT variant had a poorer outcome than patients without the variant (median overall survival [OS], 10.7 months vs 15.5 months; P = .001; median progression‐free survival [PFS], 6.4 months vs 8.5 months; P = .003). The prognostic impact was confirmed in an independent validation set of 306 GBMs from the same center (median PFS, 6.8 months vs 9.7 months; P = .006; median OS, 13.9 months vs 18.8 months; P = .0187). In the second validation cohort (591 grade 2‐4 gliomas), a significant association was observed between IDH1105GGT and an adverse prognosis for the overall series and for patients with World Health Organization grade 3 gliomas, but the difference did not reach significance in patients with GBM.

CONCLUSIONS.

Taken together, the current data strongly suggested an association between the SNP rs11554137:C>T polymorphism and adverse outcomes in patients with malignant glioma. A single‐nucleotide polymorphism (SNP) located on codon 105 of the isocitrate dehydrogenase 1 (IDH1) gene (reference SNP rs11554137) is analyzed in 3 independent series of patients with gliomas. The SNP rs11554137 is independent of the occurrence of somatic mutation on IDH1 codon 132, but, per se, has a prognostic impact in malignant gliomas. Cancer 2013. © 2012 American Cancer Society.  相似文献   

11.
The 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS) improved our understanding of the brain neoplasm biology. In more details, differences between diffuse gliomas that primarily occur in adults and those that primarily occur in children have been identified by the terms “adult-type” and “pediatric-type” diffuse gliomas. More importantly, both diagnostic and grading criteria for adult-type diffuse astrocytomas have been modified, by adopting novel molecular markers: diffuse astrocytomas, IDH-mutant have been grouped into a single entity and graded as CNS WHO grades 2, 3, or 4, with the assignment of Grade 4 in the presence of CDKN2A/B homozygous deletion, regardless of the histology [1]. Additionally, at least one of the following genetic alterations has been considered as sufficient to confer to astrocytomas, IDH wild type, a CNS WHO grade 4: i) TERT promoter mutation, ii) EGFR gene amplification, iii) combined gain of whole chromosome 7 and loss of whole chromosome 10 [+7/−10]. However, histology remains the solid basis to support these new complementary molecular data, and an integrated diagnosis is highly recommended.  相似文献   

12.
In this study, we retrospectively compared the prognostic value of the 2016 WHO classification with the former classification in 387 patients with glioma treated at our institution. According to the new classification, diagnoses included oligodendroglioma with isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion (5.4%), anaplastic oligodendroglioma with IDH mutation and 1p/19q co-deletion (3.4%), diffuse astrocytoma IDH-mutated (3.9%), anaplastic astrocytoma IDH-mutated (2.8%), glioblastoma IDH-mutated (7.8%), glioblastoma IDH-wildtype (58.4%), diffuse midline glioma H3 K27M mutation (2.6%), oligodendroglioma NOS (1.3%), anaplastic oligodendroglioma NOS (0.8%), diffuse astrocytoma IDH-wildtype (2.8%), and anaplastic astrocytoma IDH-wildtype (10.9%). The prognoses of IDH-mutated astrocytomas clearly varied according to tumor grade. However, we identified no survival difference between IDH-wildtype anaplastic astrocytomas and glioblastomas; additionally, these tumors showed similar gene expression profiles. After exclusion of those without 1p/19q co-deletion, patients with oligodendroglial tumors showed excellent survival regardless of tumor grade. Our evaluation of chromosomal aberrations suggests that the MAPK/PI3K pathway plays a role in acquired malignancy of astrocytic tumors, whereas TP53 participates in tumorigenesis. We suspect the RB pathway also plays a role in tumorigenesis of IDH-mutated gliomas. The new WHO classification more clearly reflects the tumorigenesis of gliomas and improves the prognostic power of classification.  相似文献   

13.
We have used boron neutron capture therapy (BNCT) to treat patients in Japan with newly diagnosed or recurrent high-grade gliomas and have observed a significant increase in median survival time following BNCT. Although cerebrospinal fluid dissemination (CSFD) is not usually seen with the current standard therapy of patients with glioblastoma (GBM), here we report that subarachnoid or intraventricular CSFD was the most frequent cause of death for a cohort of our patients with high-grade gliomas who had been treated with BNCT. The study population consisted of 87 patients with supratentorial high-grade gliomas; 41 had newly diagnosed tumors and 46 had recurrent tumors. Thirty of 87 patients who were treated between January 2002 and July 2013 developed CSFD. Tumor histology before BNCT and immunohistochemical staining for two molecular markers, Ki-67 and IDH1R132H, were evaluated for 20 of the 30 patients for whom pathology slides were available. Fluorescence in situ hybridization (FISH) was performed on 3 IDH1R132H-positive and 1 control IDH1R132H-negative tumors in order to determine chromosome 1p and 19q status. Histopathologic evaluation revealed that 10 of the 20 patients’ tumors were IDH1R132H-negative small cell GBMs. The remaining patients had tumors consisting of other IDH1R132H-negative GBM variants, an IDH1R132H-positive GBM and two anaplastic oligodendrogliomas. Ki-67 immunopositivity ranged from 2 to 75%. In summary, IDH1R132H-negative GBMs, especially small cell GBMs, accounted for a disproportionately large number of patients who had CSF dissemination. This suggests that these tumor types had an increased propensity to disseminate via the CSF following BNCT and that these patients are at high risk for this clinically serious event.  相似文献   

14.
15.
Fifty-seven spontaneous canine gliomas were histologically classified and graded using the latest World Health Organization (WHO 2007) criteria for classification of human gliomas. A total of 19 canine astrocytomas were classified as follows: grade IV (GBM) n = 7; grade III n = 5; and grade II, n = 7. Thirty-eight oligodendrogliomas were classified as either grade III (anaplastic) n = 35 or low grade II n = 3. Tissue microarray (TMA) immunohistochemistry was used to evaluate tumor expression of EGFR, PDGFRa and IGFBP2, three key molecules of known pathophysiological importance in human gliomas. Findings were correlated with tumor classification and grade. Increased EGFR expression was demonstrated in 57% of GBMs, 40% of grade III and 28% of grade II astrocytomas. EGFR expression occurred in only 3% of grade III oligodendrogliomas. Increased expression of PDGFRα was demonstrated in 43% of GBMs, 20% of grade III, and 14% of grade II astrocytomas. In the oligodendroglioma series, 94% of grade III tumors overexpressed PDGFRα. IGFBP2 expression was detected in 71, 60 and 28% of GBMs, grade III and grade II astrocytomas respectively. IGFBP2 expression occurred in 48% of anaplastic and in 33% of low grade oligodendrogliomas. Expression of EGFR, PDGFRα or IGFBP2 was not detected in normal canine CNS control TMA cores. The incidence of overexpression of EGFR, PDGFRα and IGFBP2 in these canine gliomas closely parallels that in human tumors of similar type and grade. These findings support a role for the spontaneous canine glioma model in directed pathway-targeting therapeutic studies.  相似文献   

16.
The aim of this study was to investigate the prognostic value of the RNA-binding protein Musashi-1 in adult patients with primary gliomas. Musashi-1 has been suggested to be a cancer stem cell-related marker in gliomas, and high levels of Musashi-1 have been associated with high tumor grades and hence poor prognosis. Samples of 241 gliomas diagnosed between 2005 and 2009 were stained with an anti-Musashi-1 antibody using a fluorescent staining protocol followed by automated image acquisition and processing. Musashi-1 area fraction and intensity in cytoplasm and in nuclei were quantified by systematic random sampling in 2 % of the vital tumor area. In WHO grade III tumors high levels of Musashi-1 were associated with poor survival in multivariate analysis (HR 3.39, p = 0.02). We identified a sub-population of glioblastoma (GBM) patients with high levels of Musashi-1 and a superior prognosis (HR 0.65, p = 0.038). In addition patients with high levels of Musashi-1 benefitted most from post-surgical treatment, indicating that Musashi-1 may be a predictive marker in GBMs. In conclusion, our results suggest that high levels of Musashi-1 are associated with poor survival in patients with WHO grade III tumors and that Musashi-1 may be a predictive marker in GBMs, although further validation is needed. We find the combination of immunofluorescence and automated quantitation to be a feasible, robust, and reproducible approach for quantitative biomarker studies.  相似文献   

17.

Background.

Recurrent mutations in the isocitrate dehydrogenase 1 (IDH1) and IDH2 genes, which are frequent in gliomas, result in marked accumulation of the metabolic by-product 2-hydroxyglutarate (2-HG) within tumors. In other malignancies, such as acute myeloid leukemia, presence of IDH mutation is associated with elevated 2-HG levels in serum or urine compartments. Circulating 2-HG in patients with glial malignancies has not been thoroughly investigated.

Methods.

In this study, we analyzed 2-HG levels in the serum and urine of a large set of patients with IDH-mutant and IDH-wild-type glioma, and the cerebrospinal fluid (CSF) from a subset of this cohort.

Results.

We found that 2-HG was elevated in the urine of patients with IDH-mutant versus IDH-wild-type glioma, although no significant differences in 2-HG levels were observed in the serum or the small set of CSF samples obtained. Among patients with IDH-mutant glioma, 2-HG levels did not differ based on the histopathologic grade, genetic subtype (TP53 mutant or 1p/19q codeleted), presence of a canonical (IDH1 R132H) or noncanonical (any other IDH variant) mutation, or treatment type.

Conclusion.

Our finding suggests that urinary 2-HG is increased among patients with IDH-mutant gliomas, and may represent a future surrogate, noninvasive biomarker to aid in diagnosis, prognosis, and management.

Implications for Practice:

Patients with glioma who harbor mutations in isocitrate dehydrogenase genes showed selective elevation of the oncometabolite 2-hydroxyglutarate in the urine. Similar elevations were not identified in the serum or cerebrospinal fluid. 2-Hydroxyglutarate may serve as a useful, noninvasive biomarker to stratify patients newly diagnosed with glioma with regard to prognosis and management.  相似文献   

18.
Reports about the prognostic value of IDH mutations and the promoter region of the O6-Methyl-guanyl-methyl-transferase gene in secondary high-grade gliomas (sHGG) are few in number. We investigated the prognostic value of IDH mutations and methylation of the promoter region of the MGMT gene in 99 patients with sHGG and analyzed the clinical course of those tumors. Patients with sHGG were screened for IDH mutations by direct sequencing, and, for promoter status of MGMT gene, by the methylation-specific polymerase chain reaction.?A total of 48 of 99 patients (48.5?%) had secondary anaplastic gliomas (Group 1), while 51 patients had secondary glioblastomas (Group 2). The median survival time after malignant progression of all patients with sHGG and with an IDH mutation was 4?years, which is significantly longer than in patients with wild-type IDH (1.2?years, p?=?0.009). Patients?? survival was not significantly influenced by the tumors?? MGMT promoter status, both in Group 1?? 9.7?years vs. 6.1?years, methylated vs. unmethylated promoter (p?=?0.330)??as well as in Group 2??1.5?years vs. 1.6?years, methylated versus unmethylated promoter (p?=?0.829). In our population, the IDH mutation status was not associated with increased PFS or median survival time in sGBM patients. However, patients with secondary anaplastic glioma and IDH mutation had a significantly improved outcome. In addition, IDH mutations are a more powerful prognostic marker concerning both PFS and MS than the MGMT promoter status in those patients.  相似文献   

19.
The metabolic genes isocitrate dehydrogenase 1 (IDH1) and IDH2 are commonly mutated in low‐grade glioma and in a subset of glioblastoma. These mutations co‐occur with other recurrent molecular alterations, including 1p/19q codeletions and tumor suppressor protein 53 (TP53) and alpha thalassemia/mental retardation (ATRX) mutations, which together help to define a molecular signature that aids in the classification of gliomas and helps to better predict clinical behavior. A confluence of research suggests that glioma development in IDH‐mutant and IDH wild‐type tumors is driven by different oncogenic processes and responds differently to current treatment paradigms. Herein, the authors discuss the discovery of IDH mutations and associated molecular alterations in glioma, review clinical features common to patients with IDH‐mutant glioma, and highlight current understanding of IDH mutation‐driven gliomagenesis with implications for emerging treatment strategies. Cancer 2017;123:4535‐4546 . © 2017 American Cancer Society.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号