首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
Bone biopsies and plasma parathyroid hormone (PTH) from 27 diabetic dialysis patients were compared to biopsies and PTH levels from matched patients without diabetes to determine if PTH has a role in preserving bone mass in diabetic renal osteodystrophy. Significantly lower values were present in the diabetic group for mineralized bone area (p less than 0.003), osteoblastic osteoid (p less than 0.01), resorptive surface (p less than 0.001), fibrosis (p less than 0.005), bone apposition rate (p less than 0.01), bone formation rate (BMU level) (p less than 0.04), and plasma PTH (p less than 0.05). Bone-surface aluminum was higher in the diabetic group (44 +/- 5% vs. 20 +/- 5%, p less than 0.005). Linear regression analysis revealed significant positive correlations of mineralized bone area with time on dialysis, bone formation rate, bone resorption, and PTH only in the group without diabetes. While both groups had significant positive correlations of PTH with osteoblastic osteoid and bone resorption, only in the nondiabetic group was there a positive correlation of PTH with bone apposition and bone formation rate (BMU level), observations suggesting that the lower bone formation in the diabetic patients may have arisen in part from a failure of PTH to promote bone mineralization. We conclude that relatively low PTH levels and high bone aluminum in diabetic patients with chronic renal failure may be responsible in part for low bone mass when compared to uremic patients without diabetes.  相似文献   

2.
A strain of Wistar rat with a hereditary defect in L-ascorbic acid biosynthesis named osteogenesis disorder (OD) rat was used to explore the effect of ascorbic acid deficiency on bone metabolism. OD rats showed lower levels of serum phosphorus, alkaline phosphatase and urinary hydroxyproline than normal rats. Bone histological studies revealed that the essential feature of OD rats was the failure of bone formation. Very few osteoblasts were seen, but mineralization per se seemed to occur normally despite impaired formation of a new matrix. The cAMP response of the bone to parathyroid hormone (PTH) was examined, using isolated perfused femora. Cyclic AMP response to PTH was significantly lower in OD rats than in normal rats. OD rats showed a histological picture with severely reduced bone formation and impaired cAMP response to PTH, which suggests that ascorbic acid deficiency might induce osteoblastic insufficiency. OD rats provide us a useful animal model to study the effect of ascorbic acid deficiency on bone metabolism.  相似文献   

3.
SOST is a target gene for PTH in bone   总被引:9,自引:0,他引:9  
Keller H  Kneissel M 《BONE》2005,37(2):148-158
  相似文献   

4.
Osteocytes integrate the responses of bone to mechanical and hormonal stimuli by poorly understood mechanisms. We report here that mice with conditional deletion of the parathyroid hormone (PTH) receptor 1 (Pth1r) in dentin matrix protein 1 (DMP1)‐8kb–expressing cells (cKO) exhibit a modest decrease in bone resorption leading to a mild increase in cancellous bone without changes in cortical bone. However, bone resorption in response to endogenous chronic elevation of PTH in growing or adult cKO mice induced by a low calcium diet remained intact, because the increased bone remodeling and bone loss was indistinguishable from that exhibited by control littermates. In contrast, the bone gain and increased bone formation in cancellous and cortical bone induced by daily injections of PTH and the periosteal bone apposition induced by axial ulna loading were markedly reduced in cKO mice compared to controls. Remarkably, however, wild‐type (WT) control littermates and transgenic mice overexpressing SOST injected daily with PTH exhibit similar activation of Wnt/β‐catenin signaling, increased bone formation, and cancellous and cortical bone gain. Taken together, these findings demonstrate that Pth1r in DMP1‐8kb–expressing cells is required to maintain basal levels of bone resorption but is dispensable for the catabolic action of chronic PTH elevation; and it is essential for the anabolic actions of daily PTH injections and mechanical loading. However, downregulation of Sost/sclerostin, previously shown to be required for bone anabolism induced by mechanical loading, is not required for PTH‐induced bone gain, showing that other mechanisms downstream of the Pth1r in DMP1‐8kb–expressing cells are responsible for the hormonal effect. © 2016 American Society for Bone and Mineral Research.  相似文献   

5.
We studied bone mineral metabolism changes complicated by acute gastroenteritis in a clinical acute metabolic acidosis milieu where we observed hypercalcemia, hypercalciuria, and elevated urinary hydroxyproline excretion. Serum magnesium and plasma osteocalcin, alkaline phosphatase, and IGF-1 levels were decreased. No significant changes in serum inorganic phosphate and plasma PTH, calcitonin, or 25-hydroxy vitamin D3 levels were detected. All abnormalities disappeared with the correction of acidosis. Observed hypercalcemia seems to be the result of increased calcium efflux from bone due to metabolic acidosis-induced catabolism of type 1 collagen and decreased osteoblastic activity. This study provides data regarding acute metabolic acidosis-induced changes in noninvasive parameters of bone modeling, assessed for the first time in humans.  相似文献   

6.
Patients with hypoparathyroidism have low circulating parathyroid (PTH) levels and higher cancellous bone volume and trabecular thickness. Treatment with PTH(1‐84) was shown to increase abnormally low bone remodeling dynamics. In this work, we studied the effect of 1‐year or 2‐year PTH(1‐84) treatment on cancellous and cortical bone mineralization density distribution (Cn.BMDD and Ct.BMDD) based on quantitative backscattered electron imaging (qBEI) in paired transiliac bone biopsy samples. The study cohort comprised 30 adult hypoparathyroid patients (14 treated for 1 year; 16 treated for 2 years). At baseline, Cn.BMDD was shifted to higher mineralization densities in both treatment groups (average degree of mineralization Cn.CaMean +3.9% and +2.7%, p < 0.001) compared to reference BMDD. After 1‐year PTH(1‐84), Cn.CaMean was significantly lower than that at baseline (–6.3%, p < 0.001), whereas in the 2‐year PTH(1‐84) group Cn.CaMean did not differ from baseline. Significant changes of Ct.BMDD were observed in the 1‐year treatment group only. The change in histomorphometric bone formation (mineralizing surface) was predictive for Cn.BMDD outcomes in the 1‐year PTH(1‐84) group, but not in the 2‐year PTH(1‐84) group. Our findings suggest higher baseline bone matrix mineralization consistent with the decreased bone turnover in hypoparathyroidism. PTH(1‐84) treatment caused differential effects dependent on treatment duration that were consistent with the histomorphometric bone formation outcomes. The greater increase in bone formation during the first year of treatment was associated with a decrease in bone matrix mineralization, suggesting that PTH(1‐84) exposure to the hypoparathyroid skeleton has the greatest effects on BMDD early in treatment. © 2015 American Society for Bone and Mineral Research.  相似文献   

7.
Parathyroid hormone (PTH) is a potent anabolic agent, but the cellular mechanisms by which it increases bone mass are not fully understood. Dickkopf 1 (Dkk1) is an endogenous inhibitor of Wnt signaling and suppresses bone formation in vivo. We sought to determine if Dkk1 and anabolic PTH treatment interact in regulating bone mass. PTH treatment of primary murine osteoblasts for 24 h reduced Dkk1 expression by 90% as quantified by real-time PCR, whereas PTH treatment in vivo reduced Dkk1 expression by 30% when given as a single daily subcutaneous dose. To directly determine whether Dkk1 modulates the anabolic response of PTH in vivo, we engineered transgenic (TG) mice expressing murine Dkk1 under the control of the 2.3-kb rat collagen alpha-1 promoter. TG mice had significantly reduced bone mass, which was accompanied by reduced histomorphometric parameters of bone formation (reduced OV/TV, ObS/OS, and NOb/TAR). Treatment of TG mice and wild-type (WT) littermates with 95 ng/g body weight of human (1–34) PTH daily for 34 days resulted in comparable increases in bone mass at all skeletal sites. Histomorphometric analyses indicated that PTH treatment increased the numbers of both osteoblasts and osteoclasts in WT mice but only increased the numbers of osteoblasts in TG mice. We conclude that overexpression of Dkk1 does not attenuate the anabolic response to PTH in vivo.  相似文献   

8.
This study aimed to investigate the behavior and ultrastructure of osteoblastic cells after intermittent PTH treatment and attempted to elucidate the role of osteoclasts on the mediation of PTH‐driven bone anabolism. After administering PTH intermittently to wildtype and c‐fos?/? mice, immunohistochemical, histomorphometrical, ultrastructural, and statistical examinations were performed. Structural and kinetic parameters related to bone formation were increased in PTH‐treated wildtype mice, whereas in the osteoclast‐deficient c‐fos?/? mice, there were no significant differences between groups. In wildtype and knockout mice, PTH administration led to significant increases in the number of cells double‐positive for alkaline phosphatase and BrdU, suggesting active pre‐osteoblastic proliferation. Ultrastructural examinations showed two major pre‐osteoblastic subtypes: one rich in endoplasmic reticulum (ER), the hypER cell, and other with fewer and dispersed ER, the misER cell. The latter constituted the most abundant preosteoblastic phenotype after PTH administration in the wildtype mice. In c‐fos?/? mice, misER cells were present on the bone surfaces but did not seem to be actively producing bone matrix. Several misER cells were shown to be positive for EphB4 and were eventually seen rather close to osteoclasts in the PTH‐administered wildtype mice. We concluded that the absence of osteoclasts in c‐fos?/? mice might hinder PTH‐driven bone anabolism and that osteoclastic presence may be necessary for full osteoblastic differentiation and enhanced bone formation seen after intermittent PTH administration.  相似文献   

9.
Intermittent administration of parathyroid hormone (PTH) increases trabecular bone mass in vivo by stimulating bone formation. To further characterize the cellular and molecular mediators of the anabolic response to PTH, we examined the effect of intermittent synthetic hPTH 1-34 on the expression and localization of selected early response genes, c-fos, c-jun, c-myc, and IL-6 protein, in bone tissue by immunohistochemistry. Young male Sprague-Dawley rats, 70–100 g, were injected s.c. with 8 μg/100 g PTH or vehicle control, once daily for 5 days. Femurs were harvested 1 and 24 hours after the fifth injection, then fixed, decalcified, processed for wax embedding, and sections were immunostained. Early response genes, c-fos, c-jun and IL-6, were strongly expressed in osteoblasts, osteocytes, and megakaryocytes in bones 1 hour after PTH, when compared with vehicle-treated controls or sections from rats, 24 hours after PTH injection. Osteoblasts, osteocytes, and megakaryocytes were also positive for c-myc but the differences in stain intensity between control and treated groups were marginal. Also, scattered islands of hematopoietic cells in the marrow stained intensely for IL-6 by 1 hour after PTH, but the stain intensity decreased to control level 24 hours after the last PTH injection. Scattered islands of hematopoietic cells in the bone marrow stained more strongly for c-fos than either c-jun or c-myc, but neither localization nor stain intensity were regulated by PTH at the time points examined. We conclude that during the immediate early phase of the anabolic response, PTH regulates c-fos, c-jun, and IL-6 expression in osteoblasts, osteocytes, megakaryocytes, and selected bone marrow hematopoietic cells in bone. Received: 7 July 1998 / Accepted: 10 June 1999  相似文献   

10.
11.
After liver transplantation there is a high incidence of fractures, with important rates of bone loss during the first months. However, the long-term evolution of bone mass and metabolism parameters have been scarcely studied. In order to determine the incidence and risk factors involved in the development of skeletal fractures and to analyze the long-term evolution of bone mass, bone turnover and hormonal status after liver transplantation, a 3-year prospective study was performed in 45 patients following liver transplantation. Serum osteocalcin, parathyroid hormone (PTH), 25-hydroxyvitamin D (25-OH D) and testosterone levels (men), and bone mass at the lumbar spine and femur were measured before and sequentially at different time points during 3 years. Spinal X-rays were obtained during the first year. Histomorphometric analysis of bone biopsies obtained in 24 patients within the first 12 hours after surgery and 6 months after transplantation was performed. Fifteen patients (33%) developed fractures after liver transplantation, and pre- transplant risk factors for fractures were age and low bone mass (odd”s ratio for osteoporosis, 95% confidence interval: 5.69, 1.32–24.53). Serum PTH, osteocalcin, 25-OH D, testosterone and creatinine levels increased after transplantation. Moreover, PTH correlated with creatinine and osteocalcin values. Bone mass decreased during the first 6 months and reached baseline values at the lumbar spine the second year, with posterior significant recovery at the femoral neck. Long term evolution of femoral neck BMD correlated with PTH levels. Six months after transplantation bone histomorphometric data showed an increase in bone formation parameters. After liver transplantation there is a high incidence of fractures, specially in elderly patients and those with osteoporosis. Bone mass decreased in the short-term period and improved, initially at the lumbar spine and later at the femur, according to histomorphometric evidences of an increase in bone formation. The increase in creatinine values induces a secondary hyperparathyroidism that influences the changes in femoral bone mass. Treatment of osteoporosis shortly after liver transplantation may be important in the prevention of bone fractures, particularly in patients with low bone mass. Received: June 2000 / Accepted: November 2000  相似文献   

12.
Normally bone formation and resorption are balanced by coupling, but in some conditions such as dietary Ca deficiency, bone resorption exceeds formation, resulting in bone loss (termed bone depletion in previous animal studies). When conditions causing depletion return to normal, a compensatory decrease in resorption and increase in formation occurs, leading to replacement of the lost bone. To test if this recovery process, termed bone repletion, might be locally regulatedupling we determined whether cellular and metabolic changes associated with repletion in vivo would as in co occur in vitro in neonatal mouse calvaria.

To increase resorption and decrease formation, serumfree cultures were treated with parathyroid hormone (10 nM bovine PTH1–84). Although formation was inhibited ([3H]proline incorporation into [3H]hydroxyproline), the number of bone cells increased during PTH treatment. To simulate repletion, PTH was removed after 3–9 days. Within 6 days of removal of PTH, resorption (osteoclast numbers and 45Ca release) decreased to control levels and bone formation increased to exceed untreated control levels. Autoradiographs of [3H]proline incorporation suggested an increase in the number of active bone forming cells (compared to untreated controls) after removal of PTH. These cellular and metabolic changes were similar to changes which occur during depletion and repletion in vivo. The results support the hypothesis that reversal of the resorptive processes initiated by PTH in organ cultures can occur in the absence of circulating factors. The apparent increase in the components of bone formation that were observed after PTH withdrawal may have resulted from generation of increased numbers of osteoblastic cells during PTH treatment.  相似文献   


13.
We studied the effects of highly purified bone morphogenetic protein 2 and 3 (BMP-2 and -3) on growth plate chondrocytes and osteoblastic cells in vitro and compared to TGF-beta. A mixture of BMP-2 and 3 (BMPs) strongly stimulated DNA synthesis of chondrocytes in the presence of fibroblast growth factor (FGF). BMPs induced rapid maturation of chondrocytes at a growing stage: BMPs transformed the cells into rounded cells and induced marked accumulation of cartilage matrix; TGF-beta slightly reduced matrix accumulation and changed cell morphology into spindle-like in the presence of FGF. Moreover, exposure of chondrocytes to BMPs resulted in a dramatic increase of the putative approximately 80 kD PTH receptors expressed on the cell surface. In multilayered chondrocytes at the calcifying stage, BMPs stimulated alkaline phosphatase (ALPase) activity but TGF-beta inhibited it. In osteoblastic MC3T3-E1 cells, BMPs were found to be the most potent stimulator of ALPase activity thus far described: ALPase in the cells treated with approximately 100 ng/ml of BMPs reached 5- to 20-fold over the basal, whereas TGF-beta inhibited expression of ALPase activity in these cells. The stimulatory action of BMPs overrode the inhibition of ALPase activity by TGF-beta when the cells were incubated with TGF-beta and BMPs. BMPs also upregulated expression of the approximately 80 kD PTH receptor on the cells. These results suggest that BMPs have unique biologic activities in vitro that lead to growth and phenotypic expression of cells playing a critical role in endochondral bone formation.  相似文献   

14.
Postmenopausal osteoporosis is often treated with bisphosphonates (eg, alendronate, [ALN]), but oversuppression of bone turnover by long‐term bisphosphonate treatment may decrease bone tissue heterogeneity. Thus, alternate treatment strategies after long‐term bisphosphonates are of great clinical interest. The objective of the current study was to determine the effect of intermittent parathyroid hormone (PTH) following 12 weeks of ALN (a bisphosphonate) treatment in 6‐month‐old, ovariectomized (OVX) rats on bone microarchitecture, bone remodeling dynamics, and bone mechanical properties at multiple length scales. By using in vivo μCT and 3D in vivo dynamic bone histomorphometry techniques, we demonstrated the efficacy of PTH following ALN therapy for stimulating new bone formation, and increasing trabecular thickness and bone volume fraction. In healthy bone, resorption and formation are coupled and balanced to sustain bone mass. OVX results in resorption outpacing formation, and subsequent bone loss and reduction in bone tissue modulus and tissue heterogeneity. We showed that ALN treatment effectively reduced bone resorption activity and regained the balance with bone formation, preventing additional bone loss. However, ALN treatment also resulted in significant reductions in the heterogeneity of bone tissue mineral density and tissue modulus. On the other hand, PTH treatment was able to shift the bone remodeling balance in favor of formation, with or without a prior treatment with ALN. Moreover, by altering the tissue mineralization, PTH alleviated the reduction in heterogeneity of tissue material properties induced by prolonged ALN treatment. Furthermore, switching to PTH treatment from ALN improved bone's postyield mechanical properties at both the whole bone and apparent level compared to ALN alone. The current findings suggest that intermittent PTH treatment should be considered as a viable treatment option for patients with prior treatment with bisphosphonates. © 2017 American Society for Bone and Mineral Research.  相似文献   

15.
16.
Most studies that have investigated the anabolic effects of parathyroid hormone (1-84) (PTH) or PTH fragments on the skeleton of ovariectomized (OVX) rats have evaluated the short-term effects of high-dose PTH(1-34) in young animals. This study used densitometry, histomorphometry, and biomechanical testing to evaluate the effects of 12-month daily treatment with low-dose PTH (15 or 30 μg/kg) in rats that were 10 months old at baseline, 4 months after OVX. Bone mineral density (BMD) and bone strength were reduced substantially in control OVX rats. The 15 μg/kg dose of PTH restored BMD to levels similar to those in sham animals within 6 months at the lumbar spine, distal and central femur, and whole body and maintained the BMD gain from 6 to 12 months. The 30 μg/kg dose produced greater effects. Both PTH doses normalized the trabecular bone volume-to-total volume ratio (BV/TV) at lumbar vertebra 3 but not at the proximal tibia (where baseline BV/TV was very low), solely by increasing trabecular thickness. PTH dose-dependently increased bone formation by increasing the mineralizing surface, but only the 30 μg/kg dose increased resorption. PTH increased cortical BMD, area, and thickness, primarily by increasing endocortical bone formation, and restored all measures of bone strength to levels similar to those in sham animals at all skeletal sites. PTH increased bone mass safely; there was no osteoid accumulation, mineralization defect, or marrow fibrosis and there were no abnormal cells. Thus, long-term PTH therapy normalized bone strength in the aged OVX rat, a model of postmenopausal osteoporosis, through increased bone turnover and enhanced formation of both trabecular and cortical bone.  相似文献   

17.
MBA-15.4 and MBA-15.6 cell lines are marrow stromal clonal subpopulations and represent various stages of differentiation of the osteoblastic family. These cells vary in terms of morphology, proliferation rate, synthesis of matrix proteins as collagen and noncollagenous proteins, and by their responses to hormones and growth factors. Their differential properties directly reflect the clonal cells' ability to form bone in vivo. When the cells were transplanted at an ectopic site, under the kidney capsule, MBA-15.4 line formed small foci of bone whereas MBA-15.6 cell line formed massive woven bone during the same period of time. In this study, we focused on the histomorphometric analysis of ectopic ossicles formed by the clonal cell lines. Assessments of bone mass changes involved measurements of cellular components, osteoid, and formation of primary bone. The bony tissue formed was condensed, no hemopoiesis was noted, and the ossicle was not remodeled. The histology studies were used for quantitative analysis of the ossicle formation and describe the dynamics of ossicles formed by the individual cell types. Received: 9 August 1995 / Accepted: 12 April 1996  相似文献   

18.
We have shown previously that the decreased trabecular bone formation in osteoporotic postmenopausal women results from a reduced ability of osteoblastic cells to proliferate. In this study we have tested the possibility that bone cells from osteoporotic women with low bone formation have an abnormal responsiveness to hormonal or local mitogenic factors. Primary cultures of bone cells with osteoblastic characteristics were obtained by migration from the trabecular bone surface in osteoporotic postmenopausal women with high (n = 7) or low (n = 7) bone formation as evaluated histomorphometrically by the extent of double tetracycline-labeled surface (DLS). Control bone cells were obtained under identical conditions from eight normal age-matched postmenopausal women. Parameters of osteoblastic differentiation (alkaline phosphatase activity and osteocalcin production) were found to be normal and similar in bone cells from osteoporotic women with low or high DLS. In contrast, cell replication as evaluated by [3H]thymidine into DNA was 3.4-fold lower in the low DLS group compared to the high DLS group, confirming our previous findings. Treatment of quiescent bone cells with TGF-beta (0.5-1 ng/ml) for 24 h significantly stimulated DNA synthesis in osteoblastic cells from normal women and in bone cells from osteoporotic patients with low or high DLS, indicating a normal responsiveness to TGF-beta in these patients. We have compared the effect of parathyroidhormone (PTH) on bone cells from normal and osteoporotic women. Basal cAMP levels and the cAMP accumulation in response to (1-34)-hPTH were similar in bone cells from patients with low or high DLS and were not different from normal values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Intermittent parathyroid hormone administration (iPTH) increases bone mass and strength by stimulating osteoblast number and activity. PTH exerts its anabolic effects through cAMP/protein kinase A (PKA) signaling pathway in mature osteoblasts and osteocytes. Here, we show that inactivation of the p38α MAPK‐encoding gene with the use of an osteocalcin‐cre transgene prevents iPTH bone anabolic action. Indeed, iPTH fails to increase insulin‐like growth factor 1 expression, osteoblast number and activity, and bone formation in mice lacking p38α in osteoblasts and osteocytes. Moreover, iPTH‐induced expression of receptor activator of NF‐κB ligand (RANKL) and subsequent increased bone resorption are suppressed in those mice. Finally, we found that PTH activates p38α MAPK downstream of cAMP/PKA signaling pathway in mature osteoblasts. Our findings identify p38α MAPK as a key component of PTH signaling in osteoblast lineage cells and highlight its requirement in iPTH osteoanabolic activity. © 2015 American Society for Bone and Mineral Research.  相似文献   

20.
Teriparatide, a recombinant peptide corresponding to amino acids 1‐34 of human parathyroid hormone (PTH), has been an effective bone anabolic drug for over a decade. However, the mechanism whereby PTH stimulates bone formation remains incompletely understood. Here we report that in cultures of osteoblast‐lineage cells, PTH stimulates glucose consumption and lactate production in the presence of oxygen, a hallmark of aerobic glycolysis, also known as Warburg effect. Experiments with radioactively labeled glucose demonstrate that PTH suppresses glucose entry into the tricarboxylic acid cycle (TCA cycle). Mechanistically, the increase in aerobic glycolysis is secondary to insulin‐like growth factor (Igf) signaling induced by PTH, whereas the metabolic effect of Igf is dependent on activation of mammalian target of rapamycin complex 2 (mTORC2). Importantly, pharmacological perturbation of glycolysis suppresses the bone anabolic effect of intermittent PTH in the mouse. Thus, stimulation of aerobic glycolysis via Igf signaling contributes to bone anabolism in response to PTH. © 2015 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号