首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
In this review, we summarize the recent microbiome studies related to diabetes disease and discuss the key findings that show the early emerging potential causal roles for diabetes. On a global scale, diabetes causes a significant negative impact to the health status of human populations. This review covers type 1 diabetes and type 2 diabetes. We examine promising studies which lead to a better understanding of the potential mechanism of microbiota in diabetes diseases. It appears that the human oral and gut microbiota are deeply interdigitated with diabetes. It is that simple. Recent studies of the human microbiome are capturing the attention of scientists and healthcare practitioners worldwide by focusing on the interplay of gut microbiome and diabetes. These studies focus on the role and the potential impact of intestinal microflora in diabetes. We paint a clear picture of how strongly microbes are linked and associated, both positively and negatively, with the fundamental and essential parts of diabetes in humans. The microflora seems to have an endless capacity to impact and transform diabetes. We conclude that there is clear and growing evidence of a close relationship between the microbiota and diabetes and this is worthy of future investments and research efforts.  相似文献   

2.
Type 2 diabetes(T2 D) is a disorder characterized by chronic inflated blood glucose levels(hyperglycemia), at first due to insulin resistance and unregulated insulin secretion but with tendency towards global spreading. The gut microbiota is recognized to have an influence on T2 D, although surveys have not formed a clear overview to date. Because of the interactions between gut microbiota and host homeostasis, intestinal bacteria are believed to play a large role in various diseases, including metabolic syndrome, obesity and associated disease. In this review, we highlight the animal and human studies which have elucidated the roles of metformin, α-glucosidase inhibitors, glucagon-like peptide-1 agonists,peroxisome proliferator-activated receptors γ agonists, inhibitors of dipeptidyl peptidase-4, sodium/glucose cotransporter inhibitors, and other less studied medications on gut microbiota. This review is dedicated to one of the most widespread diseases, T2 D, and the currently used antidiabetic drugs and most promising new findings. In general, the gut microbiota has been shown to have an influence on host metabolism, food consumption, satiety, glucose homoeostasis, and weight gain. Altered intestinal microbiota composition has been noticed in cardiovascular diseases, colon cancer, rheumatoid arthritis, T2 D,and obesity. Therefore, the main effect of antidiabetic drugs is on the microbiome composition, basically increasing the short-chain fatty acids-producing bacteria,responsible for losing weight and suppressing inflammation.  相似文献   

3.
Humans are not (and have never been) alone. From the moment we are born, millions of micro-organisms populate our bodies and coexist with us rather peacefully for the rest of our lives. This microbiome represents the totality of micro-organisms (and their genomes) that we necessarily acquire from the environment. Micro-organisms living in or on us have evolved to extract the energy they require to survive, and in exchange they support the physiological, metabolic and immune capacities that have contributed to our evolutionary success. Although currently categorized as an autoimmune disorder and regarded as a complex genetic disease, the ultimate cause of rheumatoid arthritis (RA) remains elusive. It seems that interplay between predisposing genetic factors and environmental triggers is required for disease manifestation. New insights from DNA sequence-based analyses of gut microbial communities and a renewed interest in mucosal immunology suggest that the microbiome represents an important environmental factor that can influence autoimmune disease manifestation. This Review summarizes the historical clues that suggest a possible role for the microbiota in the pathogenesis of RA, and will focus on new technologies that might provide scientific evidence to support this hypothesis.  相似文献   

4.
《European urology》2019,75(4):637-646
ContextThe recent discovery of the existence of a human genitourinary microbiome has led to the investigation of its role in mediating the pathogenesis of genitourinary malignancies, including bladder, kidney, and prostate cancers. Furthermore, although it is largely recognized that members of the gastrointestinal microbiota are actively involved in drug metabolism, new studies demonstrate additional roles and the potential necessity of the gastrointestinal microbiota in dictating cancer treatment response.ObjectiveTo summarize the current evidence of a mechanistic role for the genitourinary and gastrointestinal microbiome in genitourinary cancer initiation and treatment response.Evidence acquisitionWe conducted a literature search up to October 2018. Search terms included microbiome, microbiota, urinary microbiome, bladder cancer, urothelial carcinoma, renal cell carcinoma, kidney cancer, testicular cancer, and prostate cancer.Evidence synthesisThere is preliminary evidence to implicate the members of the genitourinary microbiota as causative factors or cofactors in genitourinary malignancy. Likewise, the current evidence for gastrointestinal microbes in dictating cancer treatment response is mainly correlative; however, we provide examples where therapeutic agents used for the treatment of genitourinary cancers are affected by the human-associated microbiota, or vice versa. Clinical trials, such as fecal microbiota transplant to increase the efficacy of immunotherapy, are currently underway.ConclusionsThe role of the microbiome in genitourinary cancer is an emerging field that merits further studies. Translating microbiome research into clinical action will require incorporation of microbiome surveillance into ongoing and future clinical trials as well as expansion of studies to include metagenomic sequencing and metabolomics.Patient summaryThis review covers recent evidence that microbial populations that reside in the genitourinary tract—and were previously not known to exist—may influence the development of genitourinary malignancies including bladder, kidney, and prostate cancers. Furthermore, microbial populations that exist at sites outside of the genitourinary tract, such as those that reside in our gut, may influence cancer development and/or treatment response.  相似文献   

5.
The human microbiome has been shown to influence a number of chronic conditions associated with impaired bone mass and bone quality, including obesity, diabetes, and inflammatory bowel disease. The connection between the microbiome and bone health, however, has not been well studied. The few studies available demonstrate that the microbiome can have a large effect on bone remodeling and bone mass. The gut microbiome is the largest reservoir of microbial organisms in the body and consists of more than a thousand different species interacting with one another in a stable, dynamic equilibrium. How the microbiome can affect organs distant from the gut is not well understood but is believed to occur through regulation of nutrition, regulation of the immune system, and/or translocation of bacterial products across the gut endothelial barrier. Here we review each of these mechanisms and discuss their potential effect on bone remodeling and bone mass. We discuss how preclinical studies of bone‐microbiome interactions are challenging because the microbiome is sensitive to genetic background, housing environment, and vendor source. Additionally, although the microbiome exhibits a robust response to external stimuli, it rapidly returns to its original steady state after a disturbance, making it difficult to sustain controlled changes in the microbiome over time periods required to detect alterations in bone remodeling, mass, or structure. Despite these challenges, an understanding of the mechanisms by which the gut microbiome affects bone has the potential to provide insights into the dissociation between fracture risk and bone mineral density in patients including those with obesity, diabetes, or inflammatory bowel disease. In addition, alteration of the gut microbiome has the potential to serve as a biomarker of bone metabolic activity as well as a target for therapies to improve bone structure and quality using pharmaceutical agents or pre‐ or probiotics. © 2016 American Society for Bone and Mineral Research.  相似文献   

6.
Wound healing problems and surgical site infections are commonly attributed to improper intraoperative technique and perioperative infection control methods. However, overwhelming evidence is emerging to suggest that the intestinal microbiome plays a profound and previously underappreciated role in infectious outcomes of surgery. Surgical stress and perioperative medical interventions alter the community structure and function of the intestinal microbiome. The resultant intestinal dysbiosis exerts overarching effects on the host immune and neuroendocrine systems. Although certainly infection is known to occur from inadvertent intraoperative contamination, a more intriguing concept is the possibility that alterations in the intestinal microbiome, occurring in response to the physiologic stress of surgery, may have a major negative influence on the host’s ability for tissue repair, regeneration, and resilience to infection.  相似文献   

7.
Modifications to the constituents of the gut microbiome influence bone density and tissue-level strength, but the specific microbial components that influence tissue-level strength in bone are not known. Here, we selectively modify constituents of the gut microbiota using narrow-spectrum antibiotics to identify components of the microbiome associated with changes in bone mechanical and material properties. Male C57BL/6J mice (4 weeks) were divided into seven groups (n = 7–10/group) and had taxa within the gut microbiome removed through dosing with: (i) ampicillin; (ii) neomycin; (iii) vancomycin; (iv) metronidazole; (v) a cocktail of all four antibiotics together (with zero-calorie sweetener to ensure intake); (vi) zero-calorie sweetener only; or (vii) no additive (untreated) for 12 weeks. Individual antibiotics remove only some taxa from the gut, while the cocktail of all four removes almost all microbes. After accounting for differences in geometry, whole bone strength was reduced in animals with gut microbiome modified by neomycin (−28%, p = 0.002) and was increased in the group in which the gut microbiome was altered by sweetener alone (+39%, p < 0.001). Analysis of the fecal microbiota detected seven lower-ranked taxa differentially abundant in animals with impaired tissue-level strength and 14 differentially abundant taxa associated with increased tissue-level strength. Histological and serum markers of bone turnover and trabecular bone volume per tissue volume (BV/TV) did not differ among groups. These findings demonstrate that modifications to the taxonomic components of the gut microbiome have the potential to decrease or increase tissue-level strength of bone independent of bone quantity and without noticeable changes in bone turnover. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

8.
With the introduction of high-throughput sequencing methods, our understanding of the human lower respiratory tract's inhabitants has expanded significantly in recent years. What is now termed the “lung microbiome” has been described for healthy patients, as well as people with chronic lung diseases and lung transplants. The lung microbiome of lung transplant recipients (LTRs) has proven to be unique compared with nontransplant patients, with characteristic findings associated with disease states, such as pneumonia, acute rejection, and graft failure. In this review, we summarize the current understanding of the lung microbiome in LTRs, not only focusing on bacteria but also highlighting key findings of the viral and the fungal community. Based on our knowledge of the lung microbiome in LTRs, we propose multiple opportunities for clinical use of the microbiome to improve outcomes in this population.  相似文献   

9.
The microbiome exerts a remarkable effect on human physiology. The study of the human-microbiome relationship is a burgeoning field with great potential to improve our understanding of health and disease. In this review, we address common surgical problems influenced by the human microbiome and explore what is thus far known about this relationship. These include inflammatory bowel disease, colorectal neoplasms, and diverticular disease. We will also discuss the effect of the microbiome on surgical complications, specifically anastomotic leak. We hope that further research in this field will enlighten our management of these and other surgical problems.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号