首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies on applications of the lattice Boltzmann method (LBM) and the finite-difference lattice Boltzmann method (FDLBM) to velocity slip simulations are mostly on one-dimensional (1D) problems such as a shear flow between parallel plates. Applications to a 2D problem may raise new issues. The author performed numerical simulations of rotational slip flow in coaxial cylinders as an example of 2D problem. Two types of 2D models were used. The first were multi-speed FDLBM models proposed by the author. The second was a standard LBM, the D2Q9 model. The simulations were performed applying a finite difference scheme to both the models. The study had two objectives. The first was to investigate the accuracies of LBM and FDLBM on applications to rotational slip flow. The second was to obtain an experience on application of the cylindrical coordinate system. The FDLBM model with 8 directions and the D2Q9 model showed an anisotropic flow pattern when the relaxation time constant or the Knudsen number was large. The FDLBM model with 24 directions showed accurate results even at large Knudsen numbers.  相似文献   

2.
The immersed boundary method (IBM) has been popular in simulating fluid structure interaction (FSI) problems involving flexible structures, and the recent introduction of the lattice Boltzmann method (LBM) into the IBM makes the method more versatile. In order to test the coupling characteristics of the IBM with the multiple-relaxation-time LBM (MRT-LBM), the three-dimensional (3D) balloon dynamics, including inflation, release and breach processes, are simulated. In this paper, some key issues in the coupling scheme, including the discretization of 3D boundary surfaces, the calculation of boundary force density, and the introduction of external force into the LBM, are described. The good volume conservation and pressure retention properties are verified by two 3D cases. Finally, the three FSI processes of a 3D balloon dynamics are simulated. The large boundary deformation and oscillation, obvious elastic wave propagation, sudden stress release at free edge, and recoil phenomena are all observed. It is evident that the coupling scheme of the IBM and MRT-LBM can handle complicated 3D FSI problems involving large deformation and large pressure gradients with very good accuracy and stability.  相似文献   

3.
The most severe limitation of the standard Lattice Boltzmann Method is the use of uniform Cartesian grids especially when there is a need for high resolutions near the body or the walls. Among the recent advances in lattice Boltzmann research to handle complex geometries, a particularly remarkable option is represented by changing the solution procedure from the original "stream and collide" to a finite volume technique. However, most of the presented schemes have stability problems. This paper presents a stable and accurate finite-volume lattice Boltzmann formulation based on a cell-centred scheme. To enhance stability, upwind second order pressure biasing factors are used as flux correctors on a D2Q9 lattice. The resulting model has been tested against a uniform flow past a cylinder and typical free shear flow problems at low and moderate Reynolds numbers: boundary layer, mixing layer and plane jet flows. The numerical results show a very good accuracy and agreement with the exact solution of the Navier-Stokes equation and previous numerical results and/or experimental data. Results in self-similar coordinates are also investigated and show that the time-averaged statistics for velocity and vorticity express self-similarity at low Reynolds numbers. Furthermore, the scheme is applied to simulate the flow around circular cylinder and the Reynolds number range is chosen in such a way that the flow is time dependent. The agreement of the numerical results with previous results is satisfactory.  相似文献   

4.
We investigate unidirectional rarefied flows confined between two infinite parallel plates with specified heat flux boundary conditions. Both Couette and force-driven Poiseuille flows are considered. The flow behaviors are analyzed numerically by solving the Shakhov model of the Boltzmann equation. We find that a zero-heat-flux wall can significantly influence the flow behavior, including the velocity slip and temperature jump at the wall, especially for high-speed flows. The predicted bimodal-like temperature profile for force-driven flows cannot even be qualitatively captured by the Navier-Stokes-Fourier equations.  相似文献   

5.
A three-dimensional (3D) lattice Boltzmann flux solver (LBFS) is presented in this paper for the simulation of both isothermal and thermal flows. The present solver combines the advantages of conventional Navier-Stokes (N-S) solvers and lattice Boltzmann equation (LBE) solvers. It applies the finite volume method (FVM) to solve the N-S equations. Different from the conventional N-S solvers, its viscous and inviscid fluxes at the cell interface are evaluated simultaneously by local reconstruction of LBE solution. As compared to the conventional LBE solvers, which apply the lattice Boltzmann method (LBM) globally in the whole computational domain, it only applies LBM locally at each cell interface, and flow variables at cell centers are given from the solution of N-S equations. Since LBM is only applied locally in the 3D LBFS, the drawbacks of the conventional LBM, such as limitation to uniform mesh, tie-up of mesh spacing and time step, tedious implementation of boundary conditions, are completely removed. The accuracy, efficiency and stability of the proposed solver are examined in detail by simulating plane Poiseuille flow, lid-driven cavity flow and natural convection. Numerical results show that the LBFS has a second order of accuracy in space. The efficiency of the LBFS is lower than LBM on the same grids. However, the LBFS needs very less non-uniform grids to get grid-independence results and its efficiency can be greatly improved and even much higher than LBM. In addition, the LBFS is more stable and robust.  相似文献   

6.
We show that a single particle distribution for the "energy-conserving" D2Q13 lattice Boltzmann scheme can simulate coupled effects involving advection and diffusion of velocity and temperature. We consider various test cases: non-linear waves with periodic boundary conditions, a test case with buoyancy, propagation of transverse waves, Couette and Poiseuille flows. We test various boundary conditions and propose to mix bounce-back and anti-bounce-back numerical boundary conditions to take into account velocity and temperature Dirichlet conditions. We present also first results for the de Vahl Davis heated cavity. Our results are compared with the coupled D2Q9-D2Q5 lattice Boltzmann approach for the Boussinesq system and with an elementary finite differences solver for the compressible Navier-Stokes equations. Our main experimental result is the loss of symmetry in the de Vahl Davis cavity computed with the single D2Q13 lattice Boltzmann model without the Boussinesq hypothesis. This result is confirmed by a direct Navier Stokes simulation with finite differences.  相似文献   

7.
The paper is devoted to the development of an efficient deterministic framework for modelling of three-dimensional rarefied gas flows on the basis of the numerical solution of the Boltzmann kinetic equation with the model collision integrals. The framework consists of a high-order accurate implicit advection scheme on arbitrary unstructured meshes, the conservative procedure for the calculation of the model collision integral and efficient implementation on parallel machines. The main application area of the suggested methods is micro-scale flows. Performance of the proposed approach is demonstrated on a rarefied gas flow through the finite-length circular pipe. The results show good accuracy of the proposed algorithm across all flow regimes and its high efficiency and excellent parallel scalability for up to 512 cores.  相似文献   

8.
Homogeneous equilibrium model (HEM) has been widely used in cavitating flow simulations. The major feature of this model is that a single equation of state (EOS) is proposed to describe the thermal behavior of bubbly liquid, where both kinematic and thermal equilibrium are assumed between two phases. In this paper, the HEM was coupled with multi-relaxation-time lattice Boltzmann model (MRT-LBM) and the acoustic behavior was simulated. Two approaches were applied alternatively: adjusting speed of sound (Buick, J. Phys. A, 2006, 39:13807-13815) and setting real gas EOS. Both approaches result in high accuracy in acoustic speed predictions for different void (gas) volume of fractions. It is demonstrated that LBM could be successfully applied as a Navier-Stokes equation solver for industrial applications. However, further dissipation and dispersion analysis shows that Shan-Chen type approaches of LBM are deficient, especially in large wave-number region.  相似文献   

9.
An accurate and direct algorithm for solving the semiclassical Boltzmann equation with relaxation time approximation in phase space is presented for parallel treatment of rarefied gas flows of particles of three statistics. The discrete ordinate method is first applied to discretize the velocity space of the distribution function to render a set of scalar conservation laws with source term. The high order weighted essentially non-oscillatory scheme is then implemented to capture the time evolution of the discretized velocity distribution function in physical space and time. The method is developed for two space dimensions and implemented on gas particles that obey the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Computational examples in one- and two-dimensional initial value problems of rarefied gas flows are presented and the results indicating good resolution of the main flow features can be achieved. Flows of wide range of relaxation times and Knudsen numbers covering different flow regimes are computed to validate the robustness of the method. The recovery of quantum statistics to the classical limit is also tested for small fugacity values.  相似文献   

10.
In this study, a numerical technique based on the Lattice Boltzmann method is presented to model viscoelastic fluid interaction with complex boundaries which are commonly seen in biological systems and industrial practices. In order to accomplish numerical simulation of viscoelastic fluid flows, the Newtonian part of the momentum equations is solved by the Lattice Boltzmann Method (LBM) and the divergence of the elastic tensor, which is solved by the finite difference method, is added as a force term to the governing equations. The fluid-structure interaction forces are implemented through the Immersed Boundary Method (IBM). The numerical approach is validated for Newtonian and viscoelastic fluid flows in a straight channel, a four-roll mill geometry as well as flow over a stationary and rotating circular cylinder. Then, a numerical simulation of Oldroyd-B fluid flow around a confined elliptical cylinder with different aspect ratios is carried out for the first time. Finally, the present numerical approach is used to simulate a biological problem which is the mucociliary transport process of human respiratory system. The present numerical results are compared with appropriate analytical, numerical and experimental results obtained from the literature.  相似文献   

11.
The simulation of multiphase flows is an outstanding challenge, due to the inherent complexity of the underlying physical phenomena and to the fact that multiphase flows are very diverse in nature, and so are the laws governing their dynamics. In the last two decades, a new class of mesoscopic methods, based on minimal lattice formulation of Boltzmann kinetic equation, has gained significant interest as an efficient alternative to continuum methods based on the discretization of the NS equations for non ideal fluids. In this paper, three different multiphase models based on the lattice Boltzmann method (LBM) are discussed, in order to assess the capability of the method to deal with multiphase flows on a wide spectrum of operating conditions and multiphase phenomena. In particular, the range of application of each method is highlighted and its effectiveness is qualitatively assessed through comparison with numerical and experimental literature data.  相似文献   

12.
The mechanism of jet flow expanding into vacuum environment (or extremely low density environment) is important for the propulsion unit of micro-electro-mechanical systems (MEMS), the thruster of spacecraft, the attitude control system of satellite, etc.. Since its flow field is often composed of local continuum region and local rarefied region, the jet flow into vacuum has noteworthy multi-scale transportation behaviors. Therefore, the numerical study of such flows needs the multi-scale schemes which are valid for both continuum and rarefied flows. In the past few years, a series of unified methods for whole flow regime (from continuum regime to rarefied regime) have been developed from the perspective of the direct modeling, and have been verified by sufficient test cases. In this paper, the compressible conserved discrete unified gas-kinetic scheme is further developed and is utilized for predicting the jet flows into vacuum environment. In order to cover the working conditions of both aerospace and MEMS applications, the jet flows with a wide range of inlet Knudsen (Kn) numbers (from 1E-4 to 100) are considered. The evolution of flow field during the entire startup and shutdown process with Kn number 100 is predicted by the present method, and it matches well with the result of analytical collisionless Boltzmann equation. For Kn numbers from 1E-4 to 10, the flow field properties such as density, momentum, and pressure are investigated, and the results are provided in details, since the published results are not sufficient at the present stage. The extent and intensity of the jet flow influence are especially investigated, because they are strongly related to the plume contamination and momentum impact on objects facing the jet, such as the solar paddles which face the attitude control thruster during the docking process.  相似文献   

13.
This paper presents a gas kinetic study and analytical results on high speed rarefied gas flows from a planar exit. The beginning of this paper reviews the results for planar free jet expanding into a vacuum, followed by an investigation of jet impingement on normally set plates with either a diffuse or a specular surface. Presented results include exact solutions for flowfield and surface properties. Numerical simulations with the direct simulation Monte Carlo method were performed to validate these analytical results, and good agreement with this is obtained for flows at high Knudsen numbers. These highly rarefied jet and jet impingement results can provide references for real jet and jet impingement flows.  相似文献   

14.
In this paper the pressure distribution of the gaseous flow in a microchannel is studied via a lattice Boltzmann equation (LBE) method. With effective relaxation times and a generalized second order slip boundary condition, the LBE can be used to simulate rarefied gas flows from slip to transition regimes. The Knudsen minimum phenomena of mass flow rate in the pressure driven flow is also investigated. The effects of Knudsen number (rarefaction effect), pressure ratio and aspect ratio (compression effect) on the pressure distribution are analyzed. It is found the rarefaction effect tends to the curvature of the nonlinear pressure distribution, while the compression effect tends to enhance its nonlinearity. The combined effects lead to a local minimum of the pressure deviation. Furthermore, it is also found that the relationship between the pressure deviation and the aspect ratio follows a pow-law.  相似文献   

15.
The Boltzmann equation (BE) for gas flows is a time-dependent nonlinear differential-integral equation in 6 dimensions. The current simplified practice is to linearize the collision integral in BE by the BGK model using Maxwellian equilibrium distribution and to approximate the moment integrals by the discrete ordinate method (DOM) using a finite set of velocity quadrature points. Such simplification reduces the dimensions from 6 to 3, and leads to a set of linearized discrete BEs. The main difficulty of the currently used (conventional) numerical procedures occurs when the mean velocity and the variation of temperature are large that requires an extremely large number of quadrature points. In this paper, a novel dynamic scheme that requires only a small number of quadrature points is proposed. This is achieved by a velocity-coordinate transformation consisting of Galilean translation and thermal normalization so that the transformed velocity space is independent of mean velocity and temperature. This enables the efficient implementation of Gaussian-Hermite quadrature. The velocity quadrature points in the new velocity space are fixed while the correspondent quadrature points in the physical space change from time to time and from position to position. By this dynamic nature in the physical space, this new quadrature scheme is termed as the dynamic quadrature scheme (DQS). The DQS was implemented to the DOM and the lattice Boltzmann method (LBM). These new methods with DQS are therefore termed as the dynamic discrete ordinate method (DDOM) and the dynamic lattice Boltzmann method (DLBM), respectively. The new DDOM and DLBM have been tested and validated with several testing problems. Of the same accuracy in numerical results, the proposed schemes are much faster than the conventional schemes. Furthermore, the new DLBM have effectively removed the incompressible and isothermal restrictions encountered by the conventional LBM.  相似文献   

16.
The Lattice Boltzmann Method (LBM) has established itself as a popular numerical method in computational fluid dynamics. Several advancements have been recently made in LBM, which include multiple-relaxation-time LBM to simulate anisotropic advection-diffusion processes. Because of the importance of LBM simulations for transport problems in subsurface and reactive flows, one needs to study the accuracy and structure preserving properties of numerical solutions under the LBM. The solutions to advective-diffusive systems are known to satisfy maximum principles, comparison principles, the non-negative constraint, and the decay property. In this paper, using several numerical experiments, it will be shown that current single- and multiple-relaxation-time lattice Boltzmann methods fail to preserve these mathematical properties for transient diffusion-type equations. We will also show that these violations may not be removed by simply refining the discretization parameters. More importantly, it will be shown that meeting stability conditions alone does not guarantee the preservation of the aforementioned mathematical principles and physical constraints in the discrete setting. A discussion on the source of these violations and possible approaches to avoid them is included. A condition to guarantee the non-negativity of concentration under LBM in the case of isotropic diffusion is also derived. The impact of this research is twofold. First, the study poses several outstanding research problems, which should guide researchers to develop LBM-based formulations for transport problems that respect important mathematical properties and physical constraints in the discrete setting. This paper can also serve as a good source of benchmark problems for such future research endeavors. Second, this study cautions the practitioners of the LBM for transport problems with the associated numerical deficiencies of the LBM, and provides guidelines for performing predictive simulations of advective-diffusive processes using the LBM.  相似文献   

17.
The lattice Boltzmann method (LBM) with an elastic model is applied to the simulation of two-phase flows containing a deformable body with a viscoelastic membrane. The numerical method is based on the LBM for incompressible two-phase fluid flows with the same density. The body has an internal fluid covered by a viscoelastic membrane of a finite thickness. An elastic model is introduced to the LBM in order to determine the elastic forces acting on the viscoelastic membrane of the body. In the present method, we take account of changes in surface area of the membrane and in total volume of the body as well as shear deformation of the membrane. By using this method, we calculate two problems, the behavior of an initially spherical body under shear flow and the motion of a body with initially spherical or biconcave discoidal shape in square pipe flow. Calculated deformations of the body (the Taylor shape parameter) for various shear rates are in good agreement with other numerical results. Moreover, tank-treading motion, which is a characteristic motion of viscoelastic bodies in shear flows, is simulated by the present method.  相似文献   

18.
In this study, the Lattice Boltzmann Method (LBM) is implemented through a finite-volume approach to perform 2-D, incompressible, and turbulent fluid flow analyses on structured grids. Even though the approach followed in this study necessitates more computational effort compared to the standard LBM (the so called stream and collide scheme), using the finite-volume method, the known limitations of the stream and collide scheme on lattice to be uniform and Courant-Friedrichs-Lewy (CFL) number to be one are removed. Moreover, the curved boundaries in the computational domain are handled more accurately with less effort. These improvements pave the way for the possibility of solving fluid flow problems with the LBM using coarser grids that are refined only where it is necessary and the boundary layers might be resolved better.  相似文献   

19.
In this paper, the power-law fluid flows in a two-dimensional square cavity are investigated in detail with multi-relaxation-time lattice Boltzmann method (MRT-LBM). The influence of the Reynolds number (Re) and the power-law index (n) on the vortex strength, vortex position and velocity distribution are extensively studied. In our numerical simulations, Re is varied from 100 to 10000, and n is ranged from 0.25 to 1.75, covering both cases of shear-thinning and shear-thickening. Compared with the Newtonian fluid, numerical results show that the flow structure and number of vortex of power-law fluid are not only dependent on the Reynolds number, but also related to power-law index.  相似文献   

20.
Due to the rapid advances in micro-electro-mechanical systems (MEMS), the study of microflows becomes increasingly important. Currently, the molecular-based simulation techniques are the most reliable methods for rarefied flow computation, even though these methods face statistical scattering problem in the low speed limit. With discretized particle velocity space, a unified gas-kinetic scheme (UGKS) for entire Knudsen number flow has been constructed recently for flow computation. Contrary to the particle-based direct simulation Monte Carlo (DSMC) method, the unified scheme is a partial differential equation-based modeling method, where the statistical noise is totally removed. But the common point between the DSMC and UGKS is that both methods are constructed through direct modeling in the discretized space. Due to the multiscale modeling in the unified method, i.e., the update of both macroscopic flow variables and microscopic gas distribution function, the conventional constraint of time step being less than the particle collision time in many direct Boltzmann solvers is released here. The numerical tests show that the unified scheme is more efficient than the particle-based methods in the low speed rarefied flow computation. The main purpose of the current study is to validate the accuracy of the unified scheme in the capturing of non-equilibrium flow phenomena. In the continuum and free molecular limits, the gas distribution function used in the unified scheme for the flux evaluation at a cell interface goes to the corresponding Navier-Stokes and free molecular solutions. In the transition regime, the DSMC solution will be used for the validation of UGKS results. This study shows that the unified scheme is indeed a reliable and accurate flow solver for low speed non-equilibrium flows. It not only recovers the DSMC results whenever available, but also provides high resolution results in cases where the DSMC can hardly afford the computational cost. In thermal creep flow simulation, surprising solution, such as the gas flowing from hot to cold regions along the wallsurface, is observed for the first time by the unified scheme, which is confirmed later through intensive DSMC computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号