首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
Bone mineral density (BMD) is a strong predictor of fracture, yet most fractures occur in women without osteoporosis by BMD criteria. To improve fracture risk prediction, the World Health Organization recently developed a country‐specific fracture risk index of clinical risk factors (FRAX) that estimates 10‐year probabilities of hip and major osteoporotic fracture. Within differing baseline BMD categories, we evaluated 6252 women aged 65 or older in the Study of Osteoporotic Fractures using FRAX 10‐year probabilities of hip and major osteoporotic fracture (ie, hip, clinical spine, wrist, and humerus) compared with incidence of fractures over 10 years of follow‐up. Overall ability of FRAX to predict fracture risk based on initial BMD T‐score categories (normal, low bone mass, and osteoporosis) was evaluated with receiver‐operating‐characteristic (ROC) analyses using area under the curve (AUC). Over 10 years of follow‐up, 368 women incurred a hip fracture, and 1011 a major osteoporotic fracture. Women with low bone mass represented the majority (n = 3791, 61%); they developed many hip (n = 176, 48%) and major osteoporotic fractures (n = 569, 56%). Among women with normal and low bone mass, FRAX (including BMD) was an overall better predictor of hip fracture risk (AUC = 0.78 and 0.70, respectively) than major osteoporotic fractures (AUC = 0.64 and 0.62). Simpler models (eg, age + prior fracture) had similar AUCs to FRAX, including among women for whom primary prevention is sought (no prior fracture or osteoporosis by BMD). The FRAX and simpler models predict 10‐year risk of incident hip and major osteoporotic fractures in older US women with normal or low bone mass. © 2011 American Society for Bone and Mineral Research  相似文献   

2.
Trabecular bone score (TBS) has been shown to predict major osteoporotic (clinical vertebral, hip, humerus, and wrist) and hip fractures in postmenopausal women and older men, but the association of TBS with these incident fractures in men independent of prevalent radiographic vertebral fracture is unknown. TBS was estimated on anteroposterior (AP) spine dual‐energy X‐ray absorptiometry (DXA) scans obtained at the baseline visit for 5979 men aged ≥65 years enrolled in the Osteoporotic Fractures in Men (MrOS) Study and its association with incident major osteoporotic and hip fractures estimated with proportional hazards models. Model discrimination was tested with Harrell's C‐statistic and with a categorical net reclassification improvement index, using 10‐year risk cutpoints of 20% for major osteoporotic and 3% for hip fractures. For each standard deviation decrease in TBS, there were hazard ratios of 1.27 (95% confidence interval [CI] 1.17 to 1.39) for major osteoporotic fracture, and 1.20 (95% CI 1.05 to 1.39) for hip fracture, adjusted for FRAX with bone mineral density (BMD) 10‐year fracture risks and prevalent radiographic vertebral fracture. In the same model, those with prevalent radiographic vertebral fracture compared with those without prevalent radiographic vertebral fracture had hazard ratios of 1.92 (95% CI 1.49 to 2.48) for major osteoporotic fracture and 1.86 (95% CI 1.26 to 2.74) for hip fracture. There were improvements of 3.3%, 5.2%, and 6.2%, respectively, of classification of major osteoporotic fracture cases when TBS, prevalent radiographic vertebral fracture status, or both were added to FRAX with BMD and age, with minimal loss of correct classification of non‐cases. Neither TBS nor prevalent radiographic vertebral fracture improved discrimination of hip fracture cases or non‐cases. In conclusion, TBS and prevalent radiographic vertebral fracture are associated with incident major osteoporotic fractures in older men independent of each other and FRAX 10‐year fracture risks, and these data support their use in conjunction with FRAX for fracture risk assessment in older men. © 2015 American Society for Bone and Mineral Research.  相似文献   

3.
The validity of the WHO 10‐yr probability of major osteoporotic fracture model (FRAX) for prediction of vertebral fracture has not been tested. We analyzed how well FRAX for major osteoporotic fractures, with and without femoral neck BMD (FN BMD), predicted the risk of vertebral fracture. We also compared the predictive validity of FRAX, FN BMD, and prevalent vertebral fracture detected by radiographs at baseline alone or in combination to predict future vertebral fracture. We analyzed data from the placebo groups of FIT (3.8‐yr follow‐up, n = 3221) with ORs and areas under receiver operating characteristics (ROC) curves (AUC). FRAX with and without FN BMD predicted incident radiographic vertebral fracture. The AUC was significantly greater for FRAX with FN BMD (AUC = 0.71) than FRAX without FN BMD (AUC = 0.68; p = 0.002). Prevalent vertebral fracture plus age and FN BMD (AUC = 0.76) predicted incident radiographic vertebral fracture as well as a combination of prevalent vertebral fracture and FRAX with FN BMD (AUC = 0.75; p = 0.76). However, baseline vertebral fracture status plus age and FN BMD (AUC = 0.76) predicted incident radiographic vertebral fracture significantly better than FRAX with FN BMD (AUC = 0.71; p = 0.0017). FRAX for major osteoporotic fractures (with and without FN BMD) predicts vertebral fracture. However, once FN BMD and age are known, the eight additional risk factors in FRAX do not significantly improve the prediction of vertebral fracture. A combination of baseline radiographic vertebral fracture, FN BMD, and age is the strongest predictor of future vertebral fracture.  相似文献   

4.

Summary

Most patients designated as high risk of fracture using fracture risk assessment tool (FRAX®) with femoral neck bone mineral density (BMD) (i.e., 10-year major osteoporotic fracture probability exceeding 20% or hip fracture exceeding 3%) have one or more T-scores in the osteoporotic range; conversely, almost no high risk patients have normal T-scores at all bone mineral density measurement sites.

Introduction

We determined the agreement between a FRAX® designation of high risk of fracture [defined as 10-year major osteoporotic fracture probability (≥20%) or hip fracture probability (≥3%)] and the WHO categorizations of bone mineral density according to T-score.

Methods

Ten-year FRAX® probabilities calculated with femoral neck BMD were derived using both Canadian and US white tools for a large clinical cohort of 36,730 women and 2,873 men age 50 years and older from Manitoba, Canada. Individuals were classified according to FRAX fracture probability and BMD T-scores alone.

Results

Most individuals designated by FRAX as high risk of major osteoporotic fracture had a T-score in the osteoporotic range at one or more BMD measurement sites (85% with Canadian tool and 83% with US white tool). The majority of individuals deemed at high risk of hip fracture had one or more T-scores in the osteoporotic range (66% with Canadian tool and 64% with US white tool). Conversely, there were extremely few individuals (<1%) who were at high risk of major osteoporotic or hip fracture with normal T-scores at all BMD measurement sites.

Conclusions

A FRAX designation of high risk of fracture is usually associated with a densitometric diagnosis of osteoporosis.  相似文献   

5.

Summary

A new Canadian WHO fracture risk assessment (FRAX?) tool to predict 10-year fracture probability was compared with observed 10-year fracture outcomes in a large Canadian population-based study (CaMos). The Canadian FRAX tool showed good calibration and discrimination for both hip and major osteoporotic fractures.

Introduction

The purpose of this study was to validate a new Canadian WHO fracture risk assessment (FRAX?) tool in a prospective, population-based cohort, the Canadian Multicentre Osteoporosis Study (CaMos).

Methods

A FRAX tool calibrated to the Canadian population was developed by the WHO Collaborating Centre for Metabolic Bone Diseases using national hip fracture and mortality data. Ten-year FRAX probabilities with and without bone mineral density (BMD) were derived for CaMos women (N?=?4,778) and men (N?=?1,919) and compared with observed fracture outcomes to 10?years (Kaplan?CMeier method). Cox proportional hazard models were used to investigate the contribution of individual FRAX variables.

Results

Mean overall 10-year FRAX probability with BMD for major osteoporotic fractures was not significantly different from the observed value in men [predicted 5.4% vs. observed 6.4% (95%CI 5.2?C7.5%)] and only slightly lower in women [predicted 10.8% vs. observed 12.0% (95%CI 11.0?C12.9%)]. FRAX was well calibrated for hip fracture assessment in women [predicted 2.7% vs. observed 2.7% (95%CI 2.2?C3.2%)] but underestimated risk in men [predicted 1.3% vs. observed 2.4% (95%CI 1.7?C3.1%)]. FRAX with BMD showed better fracture discrimination than FRAX without BMD or BMD alone. Age, body mass index, prior fragility fracture and femoral neck BMD were significant independent predictors of major osteoporotic fractures; sex, age, prior fragility fracture and femoral neck BMD were significant independent predictors of hip fractures.

Conclusion

The Canadian FRAX tool provides predictions consistent with observed fracture rates in Canadian women and men, thereby providing a valuable tool for Canadian clinicians assessing patients at risk of fracture.  相似文献   

6.
Background: Patients with primary hyperparathyroidism usually show decreased bone strength that are often not well diagnosed by conventional Dual-energy X-ray absorptiometry (DXA). Trabecular Bone Score (TBS) is a new technique for assessing bone microarchitecture indirectly. This cross-sectional study evaluates the usefulness of TBS in patients with primary hyperparathyroidism in clinical practice. Methodology: Bone mineral density (BMD) by DXA and TBS values by TBS InSight® software were determined in 72 patients with primary hyperparathyroidism to analyze its relationship with fragility fractures. A receiver operating curve was performed to evaluate the usefulness of TBS as predictor of fragility fractures. FRAX index with and without adjustment by TBS was calculated. Additionally, longitudinal data of a subgroup of patients according to the therapeutic management were also evaluated. Results: A total of 51.4% of the patients showed degraded microarchitecture while only 37.5% of them were diagnosed of osteoporosis by DXA. No significant correlation was found between TBS values and BMD parameters. However, TBS values were lower in osteoporotic patients compared to those classified as normal by BMD (1.16 ± 0.12vs 1.26 ± 0.17; p?=?0.043) and in patients with fragility fractures compared to nonfractured patients (1.19 ± 0.03vs 1.24 ± 0.02, p < 0.001). The area under the curve for TBS performed better than the combination of femoral, hip and spine-BMD for prevalent fractures (0.714vs 0.679). TBS-adjusted FRAX was higher than nonadjusted model for both major osteoporotic and hip fracture (4.5% vs 3%; 0.9% vs 0.7%; p < 0.001). At follow-up, an improvement in TBS values was observed in treated patients (medical or surgical) vs nontreated close to significance (1.27 ± 0.10vs 1.24 ± 0.11, p?=?0.074). Conclusions: TBS could be a useful tool to identify increased fracture risk in patients with primary hyperparathyroidism underdiagnosed by BMD. Moreover, FRAX adjusted by TBS could be a more robust tool for predicting the risk of osteoporotic fracture to help in therapeutic decisions in this population.  相似文献   

7.
Subjects with inflammatory bowel disease (IBD) are at increased risk for hip and other major osteoporotic fractures. However, previous analyses have not fully accounted for differences in bone mineral density (BMD) and other clinical factors that affect the risk of fracture. The World Health Organization Fracture Risk Assessment tool (FRAX) can be used to predict the 10‐year fracture risk from BMD and clinical risk factors. A population‐based database containing clinical information on all IBD subjects in the province of Manitoba, Canada, was linked with the Manitoba Bone Mineral Density Database, which contains results of all dual X‐ray absorptiometry (DXA) scans in the province. FRAX probabilities were calculated for all subjects aged 50 years or more undergoing baseline DXA testing. Subjects were followed for occurrence of major osteoporotic fractures (MOF; hip, clinical spine, wrist, humerus). Cox proportional hazards models were used to determine whether IBD was independently predictive of MOF or hip fracture. After controlling for FRAX fracture probability computed with BMD, IBD was not associated with a significantly increased risk for MOF (hazard ratio [HR] = 1.12, 95% confidence interval [CI], 0.83–1.55) but was associated with an increased risk for hip fracture (HR = 2.14; 95% CI, 1.26–3.65). The addition of femoral neck T‐score to FRAX probability without knowledge of BMD had a negligible effect on the estimated HRs for IBD, suggesting that IBD mediates any effect on fracture risk independently of femoral neck BMD. After controlling for FRAX probability, subjects with IBD are not at an increased risk for overall MOF, but may be at increased risk of hip fracture. © 2013 American Society for Bone and Mineral Research.  相似文献   

8.
The WHO Fracture Risk Assessment Tool (FRAX; http://www.shef.ac.uk/FRAX ) estimates the 10‐year probability of major osteoporotic fracture. Clodronate and bazedoxifene reduced nonvertebral and clinical fracture more effectively on a relative scale in women with higher FRAX scores. We used data from the Fracture Intervention Trial (FIT) to evaluate the interaction between FRAX score and treatment with alendronate. We combined the Clinical Fracture (CF) arm and Vertebral Fracture (VF) arm of FIT. The CF and VF arm of FIT randomized 4432 and 2027 women, respectively, to placebo or alendronate for 4 and 3 years, respectively. FRAX risk factors were assessed at baseline. FRAX scores were calculated by WHO. We used Poisson regression models to assess the interaction between alendronate and FRAX score on the risk of nonvertebral, clinical, major osteoporotic, and radiographic vertebral fractures. Overall, alendronate significantly reduced the risk of nonvertebral fracture (incidence rate ratio [IRR] 0.86; 95% confidence interval [CI], 0.75–0.99), but the effect was greater for femoral neck (FN) bone mineral density (BMD) T‐score ≤ ?2.5 (IRR 0.76; 95% CI, 0.62–0.93) than for FN T‐score > ?2.5 (IRR 0.96; 95% CI, 0.80–1.16) (p = 0.02, interaction between alendronate and FN BMD). However, there was no evidence of an interaction between alendronate and FRAX score with FN BMD for risk of nonvertebral fracture (interaction p = 0.61). The absolute benefit of alendronate was greatest among women with highest FRAX scores. Results were similar for clinical fractures, major osteoporotic fractures, and radiographic vertebral fractures and whether or not FRAX scores included FN BMD. Among this cohort of women with low bone mass there was no significant interaction between FRAX score and alendronate for nonvertebral, clinical or major osteoporotic fractures, or radiographic vertebral fractures. These results suggest that the effect of alendronate on a relative scale does not vary by FRAX score. A randomized controlled trial testing the effect of antifracture agents among women with high FRAX score but without osteoporosis is warranted. © 2012 American Society for Bone and Mineral Research.  相似文献   

9.
Daily subcutaneous (SC) injections of the investigational drug abaloparatide‐SC (80 mcg) for 18 months significantly decrease the risk of vertebral and nonvertebral fracture compared with placebo in postmenopausal women. We examined the efficacy of abaloparatide‐SC as a function of baseline fracture risk, assessed using the FRAX tool. Baseline clinical risk factors (age, body mass index [BMI], prior fracture, glucocorticoid use, rheumatoid arthritis, and smoking) were entered into country‐specific FRAX models to calculate the 10‐year probability of major osteoporotic fractures, with or without femoral neck bone mineral density (BMD). The interaction between probability of a major osteoporotic fracture and treatment efficacy was examined by a Poisson regression. A total of 821 women randomized to placebo and 824 women to abaloparatide‐SC, mean age 69 years in both groups, were followed for up to 2 years. At baseline, the 10‐year probability of major osteoporotic fractures (with BMD) ranged from 2.3% to 57.5% (mean 13.2%). Treatment with abaloparatide‐SC was associated with a 69% (95% confidence interval [CI] 38–85%) decrease in major osteoporotic fracture (MOF) and a 43% (95% CI 9–64%) decrease in any clinical fracture compared with placebo. For all outcomes, hazard ratios tended to decrease (ie, greater efficacy) with increasing fracture probability. Whereas the interaction approached significance for the outcome of any fracture (p = 0.11), there was no statistically significant interaction for any of the fracture outcomes. Similar results were noted when FRAX probability was computed without BMD. Efficacy of abaloparatide‐SC to decrease the risk of major osteoporotic fracture or any clinical fracture in postmenopausal women with low BMD and/or prior fracture appears independent of baseline fracture probability. © 2017 American Society for Bone and Mineral Research.  相似文献   

10.

Summary

We describe the creation of a FRAX? model for the assessment of fracture probability in Canadian men and women, calibrated from national hip fracture and mortality data. This FRAX tool was used to examine possible thresholds for therapeutic intervention in Canada in two large complementary cohorts of women and men.

Objective

To evaluate a Canadian World Health Organization (WHO) fracture risk assessment (FRAX?) tool for computing 10-year probabilities of osteoporotic fracture.

Methods

Fracture probabilities were computed from national hip fracture data (2005) and death hazards (2004) for Canada. Probabilities took account of age, sex, clinical risk factors (CRFs), and femoral neck bone mineral density (BMD). Treatment implications were studied in two large cohorts of individuals age 50?years and older: the population-based Canadian Multicentre Osteoporosis Study (4,778 women and 1,919 men) and the clinically referred Manitoba BMD Cohort (36,730 women and 2,873 men).

Results

Fracture probabilities increased with age, decreasing femoral neck T-score, and number of CRFs. Among women, 10.1?C11.3% would be designated high risk based upon 10-year major osteoporotic fracture probability exceeding 20%. A much larger proportion would be designated high risk based upon 10-year hip fracture probability exceeding 3% (25.7?C28.0%) or osteoporotic BMD (27.1?C30.9%), and relatively few from prior hip or clinical spine fracture (1.6?C4.2%). One or more criteria for intervention were met by 29.2?C34.0% of women excluding hip fracture probability (35.3?C41.0% including hip fracture probability). Lower intervention rates were seen among CaMos (Canadian Multicentre Osteoporosis Study) men (6.8?C12.9%), but in clinically referred men from the Manitoba BMD Cohort, one or more criteria for high risk were seen for 26.4% excluding hip fracture probability (42.4% including hip fracture probability).

Conclusions

The FRAX tool can be used to identify intervention thresholds in Canada. The FRAX model supports a shift from a dual X-ray absorptiometry (DXA)-based intervention strategy, towards a strategy based on fracture probability for a major osteoporotic fracture.  相似文献   

11.
《The spine journal》2023,23(2):295-304
Background ContextLevel-specific lumbar bone mineral density (BMD) evaluation of a single vertebral body can provide useful surgical planning and osteoporosis management information. Previous comparative studies have primarily focused on detecting spinal osteoporosis but not at specific levels.PurposeTo compare the detection rate of lumbar osteoporosis between quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA); to explore and analyze the distribution models of QCT-derived BMD and DXA T-score at the specific levels; and to evaluate the diagnostic accuracy of level-specific BMD thresholds for the prediction of osteoporotic vertebral compression fracture (OVCF) in postmenopausal women.Study Design/SettingA comparative analysis of prospectively collected data comparing QCT-derived BMD with DXA T-score.Patient SampleA total of 296 postmenopausal women who were referred to the spine service of a single academic institution were enrolled.Outcome MeasuresQCT-derived BMD and DXA T-score at specific levels, with or without osteoporotic vertebral compression fracture.MethodsPostmenopausal women who underwent QCT and DXA within a week of admission from May 2019 to June 2022 were enrolled. The diagnostic criteria for osteoporosis recommended by the World Health Organization and the American College of Radiology were used for lumbar osteoporotic diagnosis. To evaluate differences in lumbar BMD measurements at specific levels, a threshold of T score=-2.5 and QCT-derived BMD = 80 mg/cm3 were used to categorize level-specific lumbar BMD into low and high BMD. Disagreements in BMD categorization between DXA and QCT were classified as a minor or major discordance based on the definition by Woodson. Data between QCT and DXA were visualized in a stacked bar plot and analyzed. Correlations between DXA and QCT at the specific levels were evaluated using Pearson's linear correlation and scatter plots. Curve fitting of BMD distribution, receiver operating characteristic (ROC) and area under the curve (AUC) for each single vertebral level was performed.ResultsOf the 296 patients, QCT diagnosed 61.1% as osteoporosis, 30.4% as osteopenia and 8.4% as normal. For those screened with DXA, 54.1% of the patients had osteoporosis, 29.4% had osteopenia and 16.6% had normal BMD. Diagnoses were concordant for 194 (65.5%) patients. Of the other 102 discordant patients, 5 (1.7%) were major and 97 (32.8%) were minor. Significant correlations in level-specific BMD between DXA and QCT were observed (p<.001), with Pearson's correlation coefficients ranging from 0.662 to 0.728. The correlation strength was in the order of L1 > L2 > L3 > L4. The low BMD detection rate for QCT was significantly higher than that for DXA at the L3 and L4 levels (65% vs. 47.9% and 68.1% vs 43.7, respectively, p<.001). Patients with OVCF showed significantly lower QCT-derived BMD (47.2 mg/cm3 vs. 83.2 mg/cm3, p<.001) and T-score (-3.39 vs. -1.98, p<.001) than those without OVCF. Among these patients, 82.8% (101/122) were diagnosed with osteoporosis by QCT measurement, while only 74.6% (91/122) were diagnosed by DXA. For discrimination between patients with and without OVCF, QCT-derived BMD showed better diagnosed performance (AUC range from 0.769 to 0.801) than DXA T-score (AUC range from 0.696 to 0.753).ConclusionQCT provided a more accurate evaluation of lumbar osteoporosis than DXA. The QCT-derived BMD measurements at a specific lumbar level have a high diagnostic performance for OVCF.  相似文献   

12.
A FRAX model for Canada was constructed for prediction of osteoporotic and hip fracture risk using national hip fracture data with and without the use of femoral neck bone mineral density (BMD). Performance of this system was assessed independently in a large clinical cohort of 36,730 women and 2873 men from the Manitoba Bone Density Program database that tracks all clinical dual‐energy X‐ray absorptiometry (DXA) test results for the Province of Manitoba, Canada. Linkage with other provincial health databases allowed for the direct comparison of fracture risk estimates from the Canadian FRAX model with observed fracture rates to 10 years (549 individuals with incident hip fractures and 2543 with incident osteoporotic fractures). The 10‐year Kaplan‐Meier estimate for hip fractures in women was 2.7% [95% confidence interval (CI) 2.1–3.4%] with a predicted value of 2.8% for FRAX with BMD, and in men the observed risk was 3.5% (95% CI 0.8–6.2%) with predicted value of 2.9%. The 10‐year estimate of osteoporotic fracture risk for all women was 12.0% (95% CI 10.8–13.4%) with a predicted value of 11.1% for FRAX with BMD, and in men, the observed risk was 10.7% (95% CI 6.6–14.9%) with a predicted value of 8.4%. Discrepancies were observed within some subgroups but generally were small. Fracture discrimination based on receiver operating characteristic curve analysis was comparable with published meta‐analyses with area under the curve for osteoporotic fracture prediction of 0.694 (95% CI 0.684–0.705) for FRAX with BMD and for hip fractures 0.830 (95% CI 0.815–0.846), both of which were better than FRAX without BMD or BMD alone. Individual risk factors considered by FRAX made significant independent contributions to fracture prediction in one or more of the models. In conclusion, a Canadian FRAX tool calibrated on national hip fracture data generates fracture risk predictions that generally are consistent with observed fracture rates across a wide range of risk categories. © 2010 American Society for Bone and Mineral Research.  相似文献   

13.
Fracture risk calculators estimate the absolute risk of osteoporotic fractures. We investigated the performance of the FRAX and Garvan Institute fracture risk calculators in healthy, older, New Zealand, postmenopausal women with normal bone mineral density (BMD) for their age. Fractures were ascertained in women initially enrolled in a 5‐year trial of calcium supplements and followed on average for 8.8 years. Baseline data (1422 women, mean age 74 years, mean femoral neck BMD T‐score –1.3) were used to estimate fracture risk during follow‐up using the FRAX and Garvan calculators. The FRAX–New Zealand tool was used both with and without baseline BMD. The discrimination of the calculators was assessed using the area under the curve (AUC) of receiver operating characteristic curves. The calibration was assessed by comparing estimated risk of fracture with fracture incidence across a range of estimated fracture risks and clinical factors. For each fracture subtype, the calculators had comparable moderate predictive discriminative ability (AUC range: hip fracture 0.67–0.70; osteoporotic fracture 0.62–0.64; any fracture 0.60–0.63) that was similar to that of models using only age and BMD. The Garvan calculator was well calibrated for osteoporotic fractures but overestimated hip fractures. FRAX with BMD underestimated osteoporotic and hip fractures. FRAX without BMD underestimated osteoporotic and overestimated hip fractures. In summary, none of the calculators provided better discrimination than models based on age and BMD, and their discriminative ability was only moderate, which may limit their clinical utility. The calibration varied, suggesting that the calculators should be validated in local cohorts before clinical use. © 2011 American Society for Bone and Mineral Research.  相似文献   

14.
The World Health Organization fracture risk assessment tool (FRAX) uses clinical risk factors to predict the patient's 10-yr probability of sustaining a hip or other major osteoporosis-related fracture. Inclusion of the femoral neck T-score is optional in the calculation. We evaluated the impact of including the T-score in the calculation of fracture risk and resultant treatment recommendation. We retrospectively reviewed charts of 180 white women scanned on a Hologic dual-energy X-ray absorptiometry (DXA). FRAX scores were calculated with T-scores (FRAX+) and without T-scores (FRAX?). We compared the National Osteoporosis Foundation (NOF) treatment recommendations (≥20% risk of a major osteoporotic fracture or ≥3% risk of hip fracture for osteopenic patients) between FRAX+ and FRAX? scores. Agreement between FRAX+ and FRAX? was 89.4%. Disagreement occurred in 2 distinct subgroups of patients (10.6% of cases), that is, FRAX+ scores exceeded the NOF recommended treatment thresholds and FRAX? scores did not, or vice versa. One subgroup comprised older patients with normal T-scores for whom FRAX? scores exceeded the treatment threshold. The second subgroup comprised younger patients with high body mass index (BMI) and low T-scores for whom FRAX? scores did not exceed the treatment threshold. FRAX scores generated without T-scores may lead to treatment recommendations for patients who have normal bone mineral density and no treatment recommendations for patients who have osteoporosis. T-scores should be used for optimal application of FRAX.  相似文献   

15.
The presence of a vertebral fracture significantly increases the risk of future fracture, classifies a patient with "clinical" osteoporosis, and usually results in treatment for osteoporosis. However, the majority of vertebral fractures are silent, and lateral X-rays (the standard method for identification) are not routinely obtained. Instant vertebral assessment (IVA), a technology that utilizes dual X-ray absorptiometry (DXA), provides rapid assessment of vertebral fractures and is highly correlated with vertebral fractures, as assessed on standard lateral spine X-rays. To assess the role of IVA in patient management, we examined standard bone mineral density (BMD) of the spine, total hip, and femoral neck and spine IVA by DXA in 482 participants screened for an osteoporosis study, who had no previous knowledge of vertebral fractures. Using World Health Organization (WHO) guidelines, subjects were classified using BMD at the spine, total hip, femoral neck, or any combination of these central sites. In addition, we considered subjects as osteoporotic if they had vertebral fractures independent of low bone density. We found that vertebral fractures assessed by IVA were present in 18.3% of asymptomatic postmenopausal women recruited for this study. The sensitivity of BMD alone to diagnose osteoporosis based on either a vertebral fracture or low BMD using WHO criteria ranged from 40 to 74%. This means that between 26 and 60% of osteoporotic individuals could have potentially been missed. Furthermore, 11.0-18.7% of clinically osteoporotic individuals would have been classified as normal by BMD criteria alone. We conclude that IVA is a useful adjunct in the clinical identification of osteoporosis and may prevent mismanagement of osteoporotic patients.  相似文献   

16.
Trabecular bone score (TBS) is a gray‐level textural index of bone microarchitecture derived from lumbar spine dual‐energy X‐ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)‐independent predictor of fracture risk. The objective of this meta‐analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual‐level data from 17,809 men and women in 14 prospective population‐based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow‐up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35–1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10‐year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24–1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65–1.87 versus 1.70, 95% CI 1.60–1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. © 2015 American Society for Bone and Mineral Research.  相似文献   

17.
目的 评估骨水泥椎间渗漏与椎体成形术(percutaneous vertebroplasty,PVP)术后再发椎体压缩骨折风险的相关性.方法对2009年6月~2011年6月行PVP手术治疗的153例骨质疏松性椎体压缩骨折患者进行回顾性研究,根据椎体再发骨折情况分为再发骨折组与对照组,记录2组患者骨密度、骨水泥注射量与骨水泥椎间隙渗漏情况.结果共124例患者(148个椎体)获得完整随访,平均随访18个月;24例患者(32个椎体)再发椎体压缩骨折.再发椎体压缩骨折患者骨水泥椎间渗透率为25.0%(6/24)与对照组的21.0%(21/100)差异无统计学意义(P>0.05).再发椎体压缩骨折患者骨密度低于对照组,差异有统计学意义(P<0.05).结论 骨水泥椎间渗漏并不增加PVP术后再发椎体压缩骨折风险,低骨密度是再发椎体骨折的危险因素.  相似文献   

18.
Ten-year fracture risk assessment with the fracture risk assessment system (FRAX) is increasingly used to guide treatment decisions. Osteoporosis pharmacotherapy reduces fracture risk, but the effect is greater than can be explained from the increase in bone mineral density (BMD). Whether this invalidates fracture predictions with FRAX is uncertain. A total of 35,764 women (age ≥50 years) and baseline BMD testing (1996–2007) had FRAX probabilities retroactively calculated. A provincial pharmacy database was used to identify osteoporosis medication use. Women were categorized as untreated, current high adherence users [medication possession ratio (MPR) ≥0.80 in the year after BMD testing], current low adherence users (MPR <0.80), and past users. Fractures outcomes to 10 years were established form a population-based health data repository. FRAX and femoral neck BMD alone stratified major osteoporotic and hip fracture risk within untreated and each treated subgroup (all p-values <0.001) with similar area under the receiver operating characteristic curve. In untreated and each treated subgroup, a stepwise gradient in observed 10-year major osteoporotic and hip fracture incidence was found as a function of the predicted probability tertile (all p-values <0.001 for linear trend). Concordance (calibration) plots for major osteoporotic fractures and hip fractures showed good agreement between the predicted and observed 10-year fracture incidence in untreated women and each treated subgroup. Only in the highest risk tertile of women highly adherent to at least 5 years of bisphosphonate use was observed hip fracture risk significantly less than predicted, though major osteoporotic fracture risk was similar to predicted. In summary, this work suggests that the FRAX tool can be used to predict fracture probability in women currently or previously treated for osteoporosis. Although FRAX should not be used to assess the reduction in fracture risk in individuals on treatment, it may still have value for guiding the need for continued treatment or treatment withdrawal  相似文献   

19.

Summary

We examined whether low income was associated with an increased likelihood of treatment qualification for osteoporotic fracture probability determined by Canada FRAX in women aged ≥50 years. A significant negative linear association was observed between income and treatment qualification when FRAX included bone mineral density (BMD), which may have implications for clinical practice.

Introduction

Lower income has been associated with increased fracture risk. We examined whether lower income in women was associated with an increased likelihood of treatment qualification determined by Canada FRAX®.

Methods

We calculated 10-year FRAX probabilities in 51,327 Canadian women aged ≥50 years undergoing baseline BMD measured by dual energy x-ray absorptiometry 1996–2001. FRAX probabilities for hip fracture ≥3 % or major osteoporotic fracture (MOF) ≥20 % were used to define treatment qualification. Mean household income from Canada Census 2006 public use files was used to categorize the population into quintiles. Logistic regression analyses were used to model the association between income and treatment qualification.

Results

Percentages of women who qualified for treatment based upon high hip fracture probability increased linearly with declining income quintile (all p trend <0.001), but this was partially explained by older age among lower income quintiles (p trend <0.001). Compared to the highest income quintile, women in the lowest income quintile had a greater likelihood of treatment qualification based upon high hip fracture probability determined with BMD (age-adjusted odds ratio [OR], 1.34; 95 % confidence intervals (CI), 1.23–1.47) or high MOF fracture probability determined with BMD (age-adjusted OR, 1.31; 95 % CI, 1.18–1.46). Differences were nonsignificant when FRAX was determined without BMD, implying that BMD differences may be the primary explanatory factor.

Conclusions

FRAX determined with BMD identifies a larger proportion of lower income women as qualifying for treatment than higher income women.  相似文献   

20.
BackgroundCurrent evidence suggests that dual-energy x-ray absorptiometry (DXA) scans, the conventional method defining osteoporosis, is underutilized and, when used, may underestimate patient risk for skeletal fragility. It has recently been suggested that other imaging modalities may better estimate bone quality, such as the magnetic resonance imaging (MRI)-based vertebral bone quality (VBQ) score which also may assess vertebral compression fracture risk in patients with spine metastases.PurposeTo evaluate whether VBQ score is predictive of fragility fractures in a population with pre-existing low bone density and at high-risk for fracture.Study Design/SettingRetrospective single-center cohort.Patient SamplePatients followed at a metabolic bone clinic for osteopenia and/or osteoporosis.Outcome MeasuresRadiographically-documented new-onset fragility fracture.MethodsPatients with a DXA and MRI scans at the time of consultation and ≥2-year follow-up were included. Details were gathered about patient demographics, health history, current medication use, and serological studies of kidney function and bone turnover. For each patient, VBQ score was calculated using T1-weighted lumbar MRI images. Univariable and multivariable analyses were used to identify the independent predictors of a new fragility fracture. To support the construct validity of VBQ, patient VBQ scores were compared to those in a cohort of 45 healthy adults.ResultsSeventy-two (39.1%) study participants suffered fragility fractures, the occurrence of which was associated with higher VBQ score (3.50 vs. 3.01; p<.001), chronic glucocorticoid use (30.6% vs. 15.2%; p=.014), and a history of prior fragility fracture (36.1% vs. 21.4%; p=.030). Mean VBQ score across all patients in the study cohort was significantly higher than the mean VBQ score in the healthy controls (p<.001). In multivariable analysis, new-onset fracture was independently associated with history of prior fracture (OR=6.94; 95% confidence interval [2.48–19.40]; p<.001), higher VBQ score (OR=2.40 per point; [1.30–4.44]; p=.003), higher body mass index (OR=1.09 per kg/m²; [1.01–1.17]; p=.03), and chronic glucocorticoid use (OR=2.89; [1.03–8.17]; p=0.043). Notably, DXA bone mineral density (BMD) was not found to be significantly predictive of new-onset fractures in the multivariable analysis (p=.081).ConclusionsHere we demonstrate the novel, MRI-derived VBQ score is both an independent predictor of fragility fracture in at-risk patients and a superior predictor of fracture risk than DXA-measured BMD. Given the frequency with which MRIs are obtained by patients undergoing spine surgery consultation, we believe the VBQ score could be a valuable tool for estimating bone quality in order to optimize the management of these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号