首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
3D printing (3DP) has been brought to medical use since the early part of this century- but it has been widely researched on and publicized only in the last few years. Amongst patients with spinal disorders, 3DP has been utilized in various facets of patient care. These include pre-operative aspects - such as patient education, resident training, pre-operative planning and simulations, intra-operative assistance in the form of customized jigs for pedicle screw insertion, patient specific interbody cages and vertebral body substitutes in complex malignancies and spinal infections. It has also been utilized in deformity surgeries and has opened new avenues in minimally invasive spine care. Guidelines have now been drafted by various organizations including the FDA with a prime focus on quality control measures applicable to this new technology. There has been a recent surge in publications supporting the use of 3DP in spinal disorders, reporting an improvement in various aspects of patient care. As the technology spreads out its wings further, more innovations and applications are expected to unfold in the coming years. Considering the rapid advances that 3DP has made, having a basic understanding of this technology is imperative for all spine surgeons. Despite promising preliminary results, there still exist a few pitfalls of the technology which have hindered the universal application of 3DP. Most importantly, there is a dearth of data related to long term outcomes supporting its clinical use. The prohibitive cost of 3D models, the specialized manpower it necessitates and the need for specific instrumentation are major deterrents to widespread use of this technology, particularly in small-scale healthcare setups. With further advancements in technology, the goal must be to make it more accurate and affordable to hospitals and patients so that the benefits of the technology can reach a wider patient population.  相似文献   

2.
Three-dimensional printing (3DP) is one of the latest tools in the armamentarium of the modern spine surgeon. The yearning to be more precise and reliable whilst operating on the spine has led to an interest in this technology which has claimed to achieve these goals. 3D printing has been used pre-operatively for surgical planning and for resident or patient education. It has also found its way to the operation theatre where it is used to fabricate customized surgical tools or patient-specific implants. Several authors have highlighted significant benefits when 3D printing is used for specific indications in spine surgery. Novel applications of this technology in spine surgery have also been described and though still in a nascent stage, these are important for this technology to sustain itself in the future. However, major limitations have also come to light with this technology in use. This article seeks to review the current status and applications of 3D printing in spinal surgery and its major drawbacks while briefly describing the essentials of the technology. It is imperative that the modern spine surgeon knows about this important innovation and when and how it can be applied to improve surgical outcomes.  相似文献   

3.

Background

With rapid emergence of 3D printing technology, surgeons have recently started to apply this for nearly all areas of orthopaedic trauma surgery. Computed tomography or magnetic resonance images of trauma patients can be utilized for making graspable objects from 3D reconstructed images. Patient specific anatomical models can thereby be created. They enhance surgeon's knowledge of their patients' precise patho-anatomy, regarding both traumatized bones and soft tissue as well as normal areas, and therefore help in accurate preoperative planning. 3D printed patient specific instrumentation can help to achieve precise implant placement, and better surgical results. Most importantly, customized implants, casts, orthoses and prosthetics can be manufactured to match an individual's anatomy. Three dimensional (3D) printing, also called as ‘additive manufacturing’ and ‘rapid prototyping’ is considered as the “second industrial revolution”, and this appears to be especially true for orthopaedic trauma surgery.

Methods

A literature search was performed for extracting all papers related to 3D Printing applications in orthopaedics and allied sciences on the Pubmed, and SCOPUS; using suitable key terms and Boolean operators (“3D Printing” OR “3 dimensional printing” OR “3D printed” OR “additive manufacturing” OR “rapid prototyping”) AND (‘‘Orthopaedics” OR “Orthopaedics’’) AND (“Trauma” OR “Injury”)in June 2018. Search was also performed in Web of Science, Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews. No limits were set on the time period or evidence level, as 3D printing in orthopaedics is relatively recent and mainly low level evidence is available. Titles and abstracts were screened and all duplicate and unrelated papers were excluded. Papers related to orthopaedic trauma were manually selected for this review.

Results

The search on Pubmed retrieved 144 Papers and similar search on SCOPUS retrieved 94 papers. Additional searches did not reveal more relevant papers. After excluding duplicates and unrelated papers, and on screening of titles and abstracts, 59 papers were considered for review. Papers related to spine fractures only were not included, as they have been covered in another paper in this journal issue.

Conclusion

All over the world, orthopaedic Surgeon's and allied professionals and scientists are enthusiastically using 3D printing technology for designing patient specific models, instrumentation, implants, orthosis and prosthesis, besides 3D bioprinting of bone and cartilage scaffolding, and the same has been applied for nearly all areas of orthopaedic trauma surgery, from head to foot.  相似文献   

4.
《Journal of hand therapy》2020,33(2):156-163
3D printing is often discussed in the field of hand rehabilitation, yet many hand therapists are unaware of this technology and how it either is used or could potentially be used in rehabilitation. To shed some light on the state of 3D printing in hand rehabilitation, we sought insight from a rehabilitation engineer, occupational therapy educator, clinician, and hospital administrator to provide a comprehensive look at the state of 3D printing today.  相似文献   

5.
The applications of Additive Manufacturing (AM) have increased extensively in the area of orthopaedics. The AM applications are for making anatomic models, surgical instruments & tool design, splints, implants and prosthesis. A brief review of various research articles shows that patient-specific orthopaedic procedures provide multiple applications areas and provide directions for future developments. The purpose of this paper is to identify the best possible usage of additive manufacturing applications in orthopaedics field. It also presents the steps used to prepare a 3D printed model by using this technology and details applications in the field of orthopaedics. AM gives a flexible solution in orthopaedics area, where customised implants can be formed as per the required shape and size and can help substitution with customised products. A 3D model created by this technology gain an accurate perception of patient's anatomy which is used to perform mock surgeries and is helpful for highly complex surgical pathologies. It makes surgeon's job accessible and increases the success rate of the operation. AM provides a perfect fit implant for the specific patient by unlimited geometric freedom. Various scanning technologies capture the status of bone defects, and printing of the model is done with the help of this technology. It gives an exact generation of a physical model which is also helpful for medical education, surgical planning and training. This technology can help to solve present-day challenges as data of every patient is different from another.  相似文献   

6.
7.
《Injury》2016,47(11):2507-2511
We describe the methodical and possibilities of 3D surgical printing in preoperative planning of acetabular fractures showing a case of a 45-year-old with an associated transverse fracture of the left acetabulum with posterior wall fracture, with multiple fragments, and posterior ipsilateral hip dislocation, defending the do it your-self mode.  相似文献   

8.
当今关节置换术已经逐渐成为骨科常见手术,关节置换手术的相关研究亦成为热点,其研究程度也逐渐加深。3D打印技术应用于髋膝关节置换的相关报道逐渐增多,如基于3D打印技术的患者个体化器械操作,其手术辅助作用可观,尤其对于复杂病例的关节置换更为重要,但总体来说个体化器械操作在关节置换术中的运用还处于发展阶段。本文通过回顾相关文献,分析、整理3D打印个体化器械操作在全膝关节置换术中应用的研究现状,主要从个体化术前规划、术中操作、术后功能恢复等方面总结其在膝关节置换术中应用的有效性及在肥胖、膝关节畸形等特殊复杂的膝关节手术病例中应用的必要性,并简述其在当前的临床应用中存在的问题和争议,以期为今后的研究方向及临床应用提供参考。  相似文献   

9.
One of the main difficulties in intracranial aneurysms (IA) surgery refers to the choice of the appropriate clip(s) to be implanted. Although the imaging exams currently available ensure visualization of IA's morphology, they do not bring an accurate reference positioning for the surgeon in executing the surgery procedure nor efficiently contribute to planning the surgery. Unfortunately, for IA's largely inaccessible regions, there is not an efficient method of treatment planning. Therefore, we propose a novel method that allows the generation of a 3D biomodel of the IA region under investigation using additive manufacturing technology (AM). Thus, a physical copy of the IA is produced and offers the surgeon a full view of the anatomy of that region of the brain. The aim of this study is the creation of a flexible 3D physical model (elastomer) through the AM technique, in order to allow the clip selection prior to the surgery. DICOM angio‐CT images from eight patients who underwent IA surgery were transformed into STL format and then built on a 3D printer. Preoperative surgical clip selection was performed and then compared with those used in surgery. At the end of the study, all 3D IA biomodels were reproduced for microsurgical clipping selection and it was possible to predict the metal clip to be used in the surgery. In addition, the proposed methodology helps to clarify the surgical anatomy and to avoid excessive manipulation of the intracranial arteries and prolonged surgical time. The major advantage of this technology is that the surgeon can closely study complex cerebrovascular anatomy from any perspective using realistic 3D biomodels, which can be handheld, allowing simulation of intraoperative situations and anticipation of surgical challenges.  相似文献   

10.
目的 探讨三维打印快速成型聚苯乙烯模型在腰椎间盘切除术后翻修手术中的应用效果.方法 选择2015年1月~2018年8月在本院就诊的78例LDH切除术后翻修患者作为研究对象,根据治疗方法分为对照组和观察组各39例.对照组给予常规翻修术治疗,观察组给予术前3D打印聚苯乙烯模型辅助手术设计和手术模拟.观察患者手术时间、失血量...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号