首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Strontium ranelate is a novel therapy for the treatment of postmenopausal osteoporosis with actions to reduce bone resorption and increase bone formation. In vitro, strontium ranelate has anabolic and antiresorptive activity, increasing collagen and non-collagen protein synthesis, enhancing pre-osteoblast differentiation, inhibiting osteoclast differentiation, and reducing osteoclast function. In animal models, the increase in bone density is closely correlated with increases in biomechanical bone strength. Histomorphometry demonstrates reduced osteoclast surfaces with increased bone formation. Clinical trials in postmenopausal women have demonstrated 3-year fracture efficacy. Reductions in vertebral fracture were seen in patients with and without prevalent vertebral fracture. Nonvertebral fractures were also significantly reduced. In a subgroup of patients at high risk for hip fracture, there was a significant reduction in hip fracture risk. Strontium ranelate is well tolerated with nausea, diarrhea, headache, and dermatitis more frequent in treated patients only for the first 3 months of therapy. Together, these data suggest that strontium ranelate is a well-tolerated and effective therapy for postmenopausal osteoporosis reducing vertebral and nonvertebral fracture by a novel dual antiresorptive and anabolic action on bone.  相似文献   

2.
In vitro, strontium ranelate increases collagen and noncollagen protein synthesis by mature osteoblast-enriched cells. Its effects on bone formation were confirmed as the drug enhanced preosteoblastic cell replication. In the isolated osteoclast, preincubation of bone slices with strontium ranelate-induced dose-dependent inhibition of the bone-resorbing activity of treated rat osteoclast. Strontium ranelate dose-dependently inhibited preosteoclast differentiation. Its effect in postmenopausal women with established osteoporosis was assessed during an international, prospective, double-blind, randomized, placebo-controlled phase 3 program comparing strontium ranelate 2 g daily with placebo. The 3-year analysis of the phase 3 study, Spinal Osteoporosis Therapeutic Intervention, evaluating the effect of strontium ranelate 2 g/day on vertebral fracture rates, revealed a significant 41% reduction in the relative risk of patients experiencing new vertebral fracture with strontium ranelate over 3 years. A second phase 3 study showed a significant reduction in the relative risk of experiencing a nonvertebral fracture in the group treated with strontium ranelate over 3 years. These results show that strontium ranelate is a new, effective, and safe treatment for vertebral and hip osteoporosis, with a unique mode of action, increasing bone formation and decreasing bone resorption leading to a rebalance of bone turnover in favor of bone formation.  相似文献   

3.
目的探讨新伐他汀体外对破骨细胞骨吸收功能的作用及其大鼠骨代谢的影响.方法采用体外成熟破骨细胞和大鼠颅盖骨培养体系,检测新伐他汀作用7 d后破骨细胞骨吸收陷窝和培养上清钙的变化;检测大鼠颅盖骨培养上清碱磷酶和钙含量,组织学观察颅盖骨形态学变化.结果新伐他汀体外可明显抑制破骨细胞骨吸收陷窝的形成及培养上清钙的释放,新伐他汀体外可增强大鼠颅盖骨培养上清碱磷酶的活性,组织学观察到新伐他汀使大鼠颅盖骨矿化增强.结论新伐他汀体外不仅可促进大鼠颅盖骨的成骨活性,并且可明显抑制破骨细胞骨吸收功能,对骨质疏松有重要的防治作用.  相似文献   

4.
[目的]探讨辛伐他汀对体外甲状旁腺素相关肽(PTHrP)诱导小鼠的破骨细胞骨吸收功能的作用及其小鼠骨代谢的影响。[方法]采用PTHrP诱导小鼠骨髓细胞培养破骨细胞和小鼠颅盖骨培养体系,检测辛伐他汀作用8d后破骨细胞骨吸收陷窝和培养上清钙的变化;检测小鼠颅盖骨培养上清碱性磷酸酶和钙含量,组织学观察小鼠颅盖骨形态学变化。[结果]辛伐他汀体外可明显抑制PTHrP诱导小鼠的破骨细胞骨吸收陷窝的形成及培养上清钙的释放,辛伐他汀体外可增强小鼠颅盖骨培养上清碱性磷酸酶的活性,组织学观察到辛伐他汀使小鼠颅盖骨矿化增强。[结论]辛伐他汀体外不仅可促进小鼠颅盖骨的成骨活性,并且可明显抑制PTHrP诱导小鼠的破骨细胞骨吸收功能,对骨吸收性疾病有着重要的防治作用。  相似文献   

5.
成骨细胞与破骨细胞共培养及其应用研究进展   总被引:1,自引:1,他引:0  
成骨细胞与破骨细胞并非孤立存在,两种细胞存在直接接触、分泌旁分泌因子、细胞与骨基质3种相互作用.成骨细胞与破骨细胞共培养技术有直接接触式、间接接触式2类方式,它能最大程度地模拟体内微环境,有利于研究两细胞间的相互作用,探讨两者失衡在骨质疏松症等骨代谢疾病形成中的作用;细胞共培养应根据病理状态下两细胞的比例选用种属来源一致的细胞.目前该技术主要用于探讨药物防治骨质疏松症的作用机制,已有淫羊藿、三七、补骨脂、雷奈酸锶等既促进成骨细胞骨形成,又抑制破骨细胞骨吸收活性的双重药理作用研究等报道.成骨细胞与破骨细胞共培养的一个新的应用方向,将是应用于软骨下骨重建功能活动的探讨以及中西药干预骨性关节炎的研究.  相似文献   

6.
Osteoporosis is characterized by enhanced differentiation of bone‐resorbing osteoclasts, resulting in a rapid loss of functional trabecular bone. Bone‐forming osteoblasts and osteoblast‐derived osteocytes perform a key role in the regulation of osteoclast development by providing both the pro‐osteoclastogenic cytokine receptor activator of NF‐κB ligand (RANKL) and its natural decoy receptor osteoprotegerin (OPG). By regulating the RANKL/OPG ratio, osteoblasts hence determine the rate of both osteoclast differentiation and bone turnover. Here, we describe a novel role for liver X receptors (LXRs) during the crosstalk of bone‐forming osteoblasts and bone‐resorbing osteoclasts. By using a system of osteoblast/osteoclast cocultures, we identify LXRs as regulator of RANKL expression and the RANKL/OPG ratio in osteoblasts. Activation of LXRs drastically reduced the RANKL/OPG ratio and interfered with osteoblast‐mediated osteoclast differentiation in vitro. During an ovariectomy (OVX)‐induced model of postmenopausal osteoporosis, the application of an LXR agonist shifted the RANKL/OPG ratio in vivo, ameliorated the enhanced osteoclast differentiation, and provided complete protection from OVX‐induced bone loss. These results reveal an unexpected involvement of LXRs in the regulation of bone turnover and highlight a potential role for LXRs as novel targets in the treatment of osteoporosis and related diseases. © 2012 American Society for Bone and Mineral Research.  相似文献   

7.
恒定磁场对骨组织中细胞影响的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
目的阐明恒定磁场对成骨细胞和破骨细胞的生长和功能的影响和对骨髓基质细胞向成骨细胞方向分化的作用,从而在细胞水平较全面的解释磁场治疗骨质疏松的机理。方法利用体外原代培养的成骨细胞、破骨细胞和骨髓基质细胞,分别外加0.38T、0.48T恒定磁场处理后,观察恒定磁场对这三种细胞生长、分化和功能的影响。结果恒定磁场处理可促进骨髓基质细胞向成骨细胞方向分化,促进成骨细胞的增殖、分化及功能的表达,并且抑制破骨细胞的生长、分化和功能。结论恒定磁场促进骨组织的成骨作用,抑制骨分解,是其治疗骨质疏松良好效果的部分机制。  相似文献   

8.
Bone remodeling, a physiological process in which new bone is formed by osteoblasts and the preexisting bone matrix is resorbed by osteoclasts, is vital for the maintenance of healthy bone tissue in adult humans. Imbalances in this process can cause various pathological conditions, including osteoporosis. Emodin, a naturally occurring anthraquinone derivative found in Asian herbal medicines, has numerous beneficial pharmacologic effects, including anticancer and antidiabetic activities. However, the effect of emodin on the regulation of osteoblast and osteoclast activity has not yet been investigated. We show here that emodin is a potential target for osteoporosis therapeutics, as treatment with this agent enhances osteoblast differentiation and bone growth and suppresses osteoclast differentiation and bone resorption. In this study, emodin suppressed receptor activator of nuclear factor‐κB (NF‐κB) ligand (RANKL)‐induced osteoclast differentiation of bone marrow macrophages (BMMs) and the bone‐resorbing activity of mature osteoclasts by inhibiting RANKL‐induced NF‐κB, c‐Fos, and NFATc1 expression. Emodin also increased ALP, Alizarin Red‐mineralization activity, and the expression of osteoblastogenic gene markers, such as Runx2, osteocalcin (OCN), and ALP in mouse calvarial primary osteoblasts, as well as activated the p38‐Runx2 pathway, which enhanced osteoblast differentiation. Moreover, mice treated with emodin showed marked attenuation of lipopolysaccharide (LPS)‐induced bone erosion and increased bone‐forming activity in a mouse calvarial bone formation model based on micro‐computed tomography and histologic analysis of femurs. Our findings reveal a novel function for emodin in bone remodeling, and highlight its potential for use as a therapeutic agent in the treatment of osteoporosis that promotes bone anabolic activity and inhibits osteoclast differentiation. © 2014 American Society for Bone and Mineral Research.  相似文献   

9.
Strontium ranelate (S12911) has previously been shown to stimulate bone formation and inhibit bone resorption in rats. To determine whether strontium ranelate affects normal bone remodeling, we studied the effect of strontium ranelate on alveolar bone in monkeys. Strontium ranelate, at dosages of 100, 275, and 750 mg/kg per day, or vehicle, were given by gavage to 31 normal adult monkeys (Macaca fascicularis) (15 males, 16 females), aged 3-4 years. Treatment for 6 months with strontium ranelate resulted in an increase in plasma strontium concentration. Histomorphometric analyses of indices of bone formation and resorption were determined in standardized areas of alveolar bone. Treatment with strontium ranelate decreased the histomorphometric indices of bone resorption (osteoclast surface and number) with a maximal significant effect at the highest dose tested. In contrast to this inhibitory effect on bone resorption, strontium ranelate maintained bone formation. Although the amount of osteoid tended to increase, strontium ranelate, even at the highest dose, had no deleterious effect on bone mineralization, as evaluated by mineral apposition rate and osteoid thickness. These findings show that strontium ranelate decreases indices of bone resorption while maintaining bone formation in the alveolar bone in monkeys.  相似文献   

10.
Strontium ranelate is a new anti-osteoporosis treatment. This study showed that strontium ranelate stimulated PGE(2) production and osteoblastic differentiation in murine marrow stromal cells, which was markedly reduced by inhibition of COX-2 activity or disruption of COX-2 gene expression. Hence, some anabolic effects of strontium ranelate may be mediated by the induction of COX-2 and PGE(2) production. INTRODUCTION: Strontium ranelate is an orally active drug that reduces vertebral and hip fracture risk by increasing bone formation and reducing bone resorption. Strontium ranelate effects on bone formation are the result of increased osteoblastic differentiation and activity, but the mechanisms governing these effects are unknown. Based on previous work, we hypothesized that strontium ranelate increases cyclooxygenase (COX)-2 expression and that, consequently, the prostaglandin E(2) (PGE(2)) produced could mediate some effects of strontium ranelate on osteoblasts. MATERIALS AND METHODS: Marrow stromal cells (MSCs) from COX-2 wildtype (WT) and knockout (KO) mice were cultured with and without low-dose dexamethasone. Osteoblastic differentiation was characterized by alkaline phosphatase (ALP) activity, real-time PCR for ALP and osteocalcin (OCN) mRNA expression, and alizarin red staining for mineralization. Medium PGE(2) was measured by radioimmunoassay or enzyme immunoassay. RESULTS AND CONCLUSIONS: In MSCs from COX-2 WT mice, strontium ranelate significantly increased ALP activity, ALP and OCN mRNA expression, and mineralization after 14 or 21 days of culture. A short treatment at the beginning of the culture (0-7 days) with strontium ranelate was as effective as continuous treatment. Strontium ranelate (1 and 3 mM Sr(+2)) dose-dependently increased PGE(2) production, with maximum PGE(2) production occurring during the first week of culture. NS-398, a selective COX-2 inhibitor, blocked the strontium ranelate stimulation of PGE(2) production and significantly inhibited the strontium ranelate stimulation of ALP activity. In MSCs from COX-2 KO mice, the strontium ranelate stimulation of ALP and OCN mRNA expression and mineralization were markedly reduced compared with COX-2 WT cultures. Similar effects of strontium ranelate on osteoblastic markers and on PGE(2) production were seen when MSCs were cultured with or without low-dose dexamethasone (10 nM). We conclude that PGE(2) produced by the strontium ranelate induction of COX-2 expression plays a role in strontium ranelate-induced osteoblastic differentiation in MSCs in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号