首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Garimella R  Bi X  Camacho N  Sipe JB  Anderson HC 《BONE》2004,34(6):961-970
During endochondral ossification (EO), cartilage is replaced by bone. Chondrocytes of growth plate undergo proliferation, maturation, hypertrophy, matrix vesicle (MV) biogenesis and programmed cell death (PCD, apoptosis). The in vitro system presented here provides a potential experimental model for studying in vitro differentiation and MV biogenesis in chondrocyte cultures. Chondrocytes were obtained from collagenase-digested tibial and femoral growth plate cartilage of 7-week-old rachitic rats. The isolated chondrocytes were plated as monolayers at a density of 0.5 × 106 cells per 35-mm plate and grown for 17 days in BGJb medium supplemented with 10% fetal bovine serum, 50 μg/ml ascorbic acid. Light microscopy revealed Sirius red-positive, apparent bone matrix in layers at the surfaces of cartilaginous nodules that developed in the cultures. The central matrix was largely alcian blue staining thus resembling cartilage matrix. Electron microscopy revealed superficial areas of bone like matrix with large banded collagen fibrils, consistent with type I collagen. Most of the central matrix was cartilaginous, with small fibrils, randomly arranged consistent with type II collagen. The presence of peripheral type I and central type II and type X collagen was confirmed by immunohistochemical staining. Immunohistochemistry with anti-Bone morphogenetic proteins 2, 4 and 6 showed that BMP expression is associated with maturing hypertrophic central chondrocytes, many of which were TUNEL positive and undergoing cell death with plasma membrane breaks, hydropic swelling and cell fragmentation. During early mineralization, small radial clusters of hydroxyapatite-like mineral were associated with matrix vesicles. Collagenase digestion-released MVs from the cultures showed a high specific activity for alkaline phosphatase and demonstrated a pattern of AMP-stimulated nonradioactive 40Calcium deposition comparable to that observed with native MVs. These studies confirm that primary cultures of rat growth plate chondrocytes are a reasonable in vitro model of growth plate histotype, MV biogenesis and programmed cell death.  相似文献   

2.
The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.  相似文献   

3.
We have shown previously that creatine kinase (CK) activity is required for normal development and mineralization of chicken growth cartilage and that expression of the cytosolic isoforms of CK is related to the biosynthetic and energy status of the chondrocyte. In this study, we have characterized changes in isoenzyme activity and mRNA levels of CK (muscle-specific CK, M-CK; brain-type CK, B-CK; and mitochondrial CK subunits, MiaCK and MibCK) in the growth plate in situ and in chondrocyte culture systems that model the development/maturation program of the cartilage. The in vitro culture systems analyzed were as follows: tibial chondrocytes, which undergo hypertrophy; embryonic cephalic and caudal sternal chondrocytes, which differ from each other in their mineralization response to retinoic acid; and long-term micromass cultures of embryonic limb mesenchymal cells, which recapitulate the chondrocyte differentiation program. In all systems analyzed, B-CK was found to be the predominant isoform. In the growth plate, B-CK expression was highest in the most calcified regions, and M-CK was less abundant than B-CK in all regions of the growth plate. In tibial chondrocytes, an increase in B-CK expression was seen when the cells became hypertrophic. Expression of B-CK increased slightly over 15 days in mineralizing, retinoic acid-treated cephalic chondrocytes, but it decreased in nonmineralizing caudal chondrocytes, while there was little expression of M-CK. Interestingly, in limb mesenchyme cultures, significant M-CK expression was detected during chondrogenesis (days 2-7), whereas hypertrophic cells expressed only B-CK. Finally, expression of MiaCK and MibCK was low both in situ and in vitro. These observations suggest that the CK genes are differentially regulated during cartilage development and maturation and that an increase in CK expression is important in initiating chondrocyte maturation.  相似文献   

4.
The major aim of the current investigation was to evaluate the role of thiols during chondrocyte maturation and apoptosis. Using a thiol-sensitive fluorescent probe, we found that in chick growth plate chondrocytes, hypertrophy is accompanied by a decrease in the glutathione content. In this study, we show that the maturation-dependent loss of thiol, although not causing death of maturing chondrocytes, drastically increases susceptibility to apoptosis by oxidative and nitrosoactive stress. To investigate how the loss of thiol content in cultured chondrocytes affects the expression of the hypertrophic phenotype, we chemically manipulated intracellular thiol levels and analyzed the expression of important maturation markers. We found that thiol depletion causes a decrease in the expression of osteopontin, type X and type II collagen and a significant loss of alkaline phosphatase activity, suggesting that the expression of the hypertrophic phenotype is tightly regulated by redox levels in chondrocytes. Furthermore, severe thiol depletion profoundly affected cell survival under oxidative and nitrosoactive stress. It was concluded that the loss of thiol reserve is not only linked to the expression of the hypertrophic phenotype but also influenced chondrocyte survival, linking chondrocyte maturation and the activation of the apoptotic pathway.  相似文献   

5.
The growth plate chondrocyte plays a central role in growth plate function. The purpose of this study was to characterize the respiratory and calcium transport properties of isolated mammalian growth plate chondrocytes and mitochondria obtained from these cells and to quantitate the mitochondrial weight and volume fraction in each zone of the growth plate. A new method was developed for isolation of mitochondria from chondrocyte suspensions. Isolated chondrocyte mitochondria demonstrated an eightfold increase in oxygen consumption in response to calcium and a two- to threefold increase in oxygen consumption in response to adenosine diphosphate. Similar responses were observed in chondrocytes treated with digitonin. The mitochondrial protein content of the growth plate and hyaline cartilage chondrocytes is significantly less than hepatocytes. Conversely, the chondrocyte mitochondrial cytochrome aa3 content is similar to mitochondria from a wide variety of sources. A zonal analysis of the growth plate demonstrates an increase in the mitochondrial weight (protein) fraction from the reserve to the hypertrophic zone whereas the mitochondrial volume fraction decreases from the reserve to the hypertrophic zone. The findings of this study emphasize the dependence of chondrocytes on glycolysis as a prime energy source and support the concept that chondrocyte mitochondria have become specialized in the process of matrix calcification.  相似文献   

6.
Reimplantation of growth plate chondrocytes into growth plate defects in sheep   总被引:12,自引:0,他引:12  
Defects in growth plates due to trauma, infection, or genetic causes can result in bone formation across the defect, bridging the epiphysis and metaphysis, resulting in growth arrest and limb deformation. We have investigated the capacity of implanted chondrocyte cultures to prevent this process. Sheep growth plate chondrocytes were isolated, and after culture at high density produced easily manipulated cartilaginous discs. The tissue was implanted into growth plate defects produced in lambs and the response was assessed histologically. Following implantation, cultures continued to proliferate and maintain a cartilage-like matrix. After 8 to 12 weeks, hypertrophic maturation chondrocyte columnation, and associated endochondral calcification were observed. Culture implantation was always associated with local immune inflammatory reaction, which continued throughout the course of investigation. Cellular survival was variable and resulted in the presence of viable implants as well as residual cartilage matrix devoid of chondrocytes; however, implanted chondrocyte discs always prevented bone bridge formation. These findings encourage the expectation that cultured chondrocytes may provide a useful replacement for the inert interpositional materials currently used in the treatment of growth arrest. The potential of this technique for growth plate replacement, however, requires a more predictable rate of implant survival. The likely reasons for implant loss are discussed.  相似文献   

7.
Endochondral ossification is initiated by differentiation of mesenchymal cells into chondrocytes, which produce a cartilaginous matrix, proliferate, mature, and undergo hypertrophy, followed by matrix calcification, and substitution of cartilage by bone. A number of hormones and growth factors have been implicated in this process. Using in vitro, long-term, high-density, micromass cultures of chick embryonic mesenchyme, that recapitulate the process of chondrogenesis, chondrocyte maturation, and hypertrophy, we have investigated the importance of a balance between proliferation and apoptosis in cartilage maturation, focusing specifically on the effects of transforming growth factor-beta1 (TGF-beta1) and the thyroid hormone, triiodothyronine (T3). Our results showed that TGF-beta1 stimulates proliferation, by week 2 of culture, and T3 inhibits proliferation by week 3. Cell size increases in cultures treated with T3. Collagen type X is expressed in all culture, and delay in matrix deposition is seen only in the cultures treated with TGF-beta1. T3 stimulates alkaline phosphatase activity, but not calcification. T3 enhances apoptosis, as seen by TUNEL staining, and internucleosomal DNA fragmentation. The results support the roles of T3 and TGF-beta in cartilage maturation, i.e., TGF-beta stimulates proliferation and suppresses hypertrophy, while T3 stimulates hypertrophy and apoptosis.  相似文献   

8.
9.
INTRODUCTION: Isolating and culturing primary chondrocytes such that they retain their cell type and differentiate to a hypertrophic state is central to many investigations of skeletal growth and its regulation. The ability to store frozen chondrocytes has additional scientific and tissue engineering interest. Previous work has produced approaches of varying yield and complexity but does not permit frozen storage of cells for subsequent differentiation in culture. Investigations of growth plate dysplasias secondary to defective osteoclastogenesis in rodent models of osteopetrosis led us to adapt and modify a culture method and to cryopreserve neonatal rat costochondral chondrocytes. METHODS: Chondrocytes were isolated from dissected ribs of 3-day-old rat pups by collagenase, hyaluronidase, and trypsin serial digestions. This was done either immediately or after the isolation was interrupted following an initial protease treatment to allow the chondrocytes, still in partially digested rib rudiments, to be frozen and later thawed for culture. Cells were plated in flat-bottom wells and allowed to adhere and grow under different conditions. Choice of media permitted cells to be maintained or induced to differentiate. Cell growth was monitored, as was expression of several relevant genes: collagen types II and X; osteocalcin, Sox9, adipocyte FABP, MyoD, aggrecan, and others. Mineralization was measured by alizarin red binding, and cultures were examined by light, fluorescence, and electron microscopy. RESULTS: Cells retained their chondrocyte phenotype and ability to differentiate and mineralize the collagen-rich extracellular matrix even after freezing-thawing. RT-PCR showed retention of chondrocyte-specific gene expression, including aggrecan and collagen II. The cells had a flattened, "proliferating zone" appearance initially, and by 2 weeks post-confluence, exhibited swelling and other salient features of hypertrophic cells seen in vivo. Collagen fibrils were abundant in the extracellular matrix, along with matrix vesicles. The switch to collagen type X as marker for hypertrophy was not rigidly temporally regulated as happens in vivo, but its expression increased during hypertrophic differentiation. CONCLUSIONS: This method should prove valuable as a means of studying chondrocyte regulation and has the advantages of simpler initial dissection, yields of a purer chondrocyte population, and the ability to stockpile frozen raw material for subsequent studies.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号