首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Accurate, rapid and economical fungal species identification has been a major aim in mycology. In this study, our goal was to examine the feasibility of a high‐resolution melting curve analysis (HRMA) of internal transcribed regions ITS1 and ITS2 in ribosomal DNA (rDNA) for a rapid, simple and inexpensive differentiation of eight clinically relevant Candida species (Candida albicans, Candida glabrata, Candida parapsilosis, Candida krusei, Candida tropicalis, Candida guilliermondii, Candida dubliniensis and Candida lusitaniae). In addition, for the first time, we tested the applicability of HRMA to classify C. albicans strains into four previously described genotypes (A, B, C and D) using a primer set that spans the transposable intron region of 25S of rDNA. Type and unknown clinical oral isolates were used in this study and the melting curve analysis was compared with both amplicons' sequencing and agarose gel electrophoresis analysis. Real‐time PCR and subsequent HRMA of the two described rDNA regions generated distinct melting curve profiles that were in accord with sequencing and gel electrophoresis analysis, highly reproducible, and characteristic of each of the eight Candida species and C. albicans genotypes. Moreover, results were obtained in 4 h and without the need for any post‐amplification handling, so reducing time and cost. Owing to its simplicity and speed, this technique is a good fit for genotypic analysis of hundreds of clinical strains in large epidemiological settings.  相似文献   

2.
Streptococcus mutans and Candida albicans are frequently co‐isolated from dental plaque of children with early childhood caries (ECC) and are only rarely found in children without ECC, suggesting that these species interact in a manner that contributes to the pathogenesis of ECC. Previous studies have demonstrated that glucans produced by S. mutans are crucial for promoting the formation of biofilm and cariogenicity with C. albicans; however, it is unclear how non‐glucan S. mutans biofilm factors contribute to increased biofilm formation in the presence of C. albicans. In this study we examined the role of S. mutans antigen I/II in two‐species biofilms with C. albicans, and determined that antigen I/II is important for the incorporation of C. albicans into the two‐species biofilm and is also required for increased acid production. The interaction is independent of the proteins Als1 and Als3, which are known streptococcal receptors of C. albicans. Moreover, antigen I/II is required for the colonization of both S. mutans and C. albicans during co‐infection of Drosophila melanogaster in vivo. Taken together, these results demonstrate that antigen I/II mediates the increase of C. albicans numbers and acid production in the two‐species biofilm, representing new activities associated with this known S. mutans adhesin.  相似文献   

3.

Objective

To determine the frequency of Candida spp., xerostomia, and salivary flow rate (SFR) in three different groups: patients with OLP (OLP group), patients with oral mucosal lesions other than OLP (non‐OLP group), and subjects without oral mucosal lesions (control group).

Material and methods

Xerostomia as well as SFR was investigated in the three groups. Samples for isolation of Candida spp. were collected from OLP lesions (38 patients), non‐OLP lesions (28 patients), and healthy subjects (32 subjects).

Results

There was no statistically significant difference regarding the frequency of xerostomia and hyposalivation among the three groups (P > 0.05). A higher prevalence for colonization by Candida spp. was found in the healthy subject as compared to that of patients with OLP (= 0.03) and non‐OLP (= 0.02) groups. Low SFR was not a factor for colonization by Candida spp.

Conclusions

Xerostomia and hyposalivation occur with similar frequency in subjects with and without oral lesions; also, the presence of oral lesions does not increase the susceptibility to colonization by Candida spp. It seems that any study implicating Candida spp. in the malignant transformation of oral lesions should be carried out mostly on a biochemical basis, that is, by testing the capability of Candida spp. to produce carcinogenic enzyme.  相似文献   

4.
The increased incidence of severe disseminated infections caused by the opportunistic yeast‐like fungi Candida spp. highlights the urgent need for research into the major virulence factors of these pathogens—extracellular aspartic proteinases of the candidapepsin and yapsin families. Classically, these enzymes were considered to be generally destructive factors that damage host tissues and provide nutrients for pathogen propagation. However, in recent decades, novel and more specific functions have been suggested for extracellular candidal proteinases. These include contributions to cell wall maintenance and remodeling, the formation of polymicrobial biofilms, adhesion to external protective barriers of the host, the deregulation of host proteolytic cascades (such as the complement system, blood coagulation and the kallikrein–kinin system), a dysregulated host proteinase–inhibitor balance, the inactivation of host antimicrobial peptides, evasion of immune responses and the induction of inflammatory mediator release from host cells. Only a few of these activities recognized in Candida albicans candidapepsins have been also confirmed in other Candida species, and characterization of Candida glabrata yapsins remains limited.  相似文献   

5.
Streptococcus anginosus and the closely related species Streptococcus constellatus and Streptococcus intermedius, are primarily commensals of the mucosa. The true pathogenic potential of this group has been under‐recognized for a long time because of difficulties in correct species identification as well as the commensal nature of these species. In recent years, streptococci of the S. anginosus group have been increasingly found as relevant microbial pathogens in abscesses and blood cultures and they play a pathogenic role in cystic fibrosis. Several international studies have shown a surprisingly high frequency of infections caused by the S. anginosus group. Recent studies and a genome‐wide comparative analysis suggested the presence of multiple putative virulence factors that are well‐known from other streptococcal species. However, very little is known about the molecular basis of pathogenicity in these bacteria. This review summarizes our current knowledge of pathogenicity factors and their regulation in S. anginosus.  相似文献   

6.
Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast acetaldehyde is a by‐product of the pyruvate bypass that converts pyruvate into acetyl‐Coenzyme A (CoA) during fermentation. The aims of our study were: (i) to determine the levels of acetaldehyde produced by Candida albicans in the presence of glucose in low oxygen tension in vitro; (ii) to analyse the expression levels of genes involved in the pyruvate‐bypass and acetaldehyde production; and (iii) to analyse whether any correlations exist between acetaldehyde levels, alcohol dehydrogenase enzyme activity or expression of the genes involved in the pyruvate‐bypass. Candida albicans strains were isolated from patients with oral squamous cell carcinoma (n = 5), autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) patients with chronic oral candidosis (n = 5), and control patients (n = 5). The acetaldehyde and ethanol production by these isolates grown under low oxygen tension in the presence of glucose was determined, and the expression of alcohol dehydrogenase (ADH1 and ADH2), pyruvate decarboxylase (PDC11), aldehyde dehydrogenase (ALD6) and acetyl‐CoA synthetase (ACS1 and ACS2) and Adh enzyme activity were analysed. The C. albicans isolates produced high levels of acetaldehyde from glucose under low oxygen tension. The acetaldehyde levels did not correlate with the expression of ADH1, ADH2 or PDC11 but correlated with the expression of down‐stream genes ALD6 and ACS1. Significant differences in the gene expressions were measured between strains isolated from different patient groups. Under low oxygen tension ALD6 and ACS1, instead of ADH1 or ADH2, appear the most reliable indicators of candidal acetaldehyde production from glucose.  相似文献   

7.
During infection, interactions between Candida albicans and oral epithelial cells result in oral epithelial cell death. This is clinically manifested by the development of oral mucosal ulcerations generally associated with discomfort. In vitro studies have shown that C. albicans induces early apoptotic alterations in oral epithelial cells; however, these studies have also shown that treatment of infected cells with caspase inhibitors does not prevent their death. The reasons for these contradictory results are unknown and it is still not clear if C. albicans stimulates oral epithelial signaling pathways that promote apoptotic cell death. Activation of specific death pathways in response to microbial organisms plays an essential role in modulating the pathogenesis of a variety of infectious diseases. The aim of this study was to (i) characterize C. albicans‐induced apoptotic morphological alterations in oral epithelial cells, and (ii) investigate the activation of apoptotic signaling pathways and expression of apoptotic genes during infection. Candida albicans induced early apoptotic changes in over 50% of oral epithelial cells. However, only 15% of those showed mid‐late apoptotic alterations. At the molecular level, C. albicans caused a loss of the mitochondrial transmembrane potential and translocation of mitochondrial cytochrome c. Caspase‐3/9 activities increased only during the first hours of infection. Moreover, poly[ADP ribose] polymerase 1 was cleaved into apoptotic and necrotic‐like fragments. Finally, five anti‐apoptotic genes were significantly upregulated and two pro‐apoptotic genes were downregulated during infection. Altogether, these findings indicate that epithelial apoptotic pathways are activated in response to C. albicans, but fail to progress and promote apoptotic cell death.  相似文献   

8.
The oral microbiome is composed of microorganisms residing in the oral cavity, which are critical components of health and disease. Disruption of the oral microbiome has been proven to influence the course of oral diseases, especially among immunocompromised patients. Oral microbiome is comprised of inter‐kingdom microorganisms, including yeasts such as Candida albicans, bacteria, archaea and viruses. These microorganisms can interact synergistically, mutualistically and antagonistically, wherein the sum of these interactions dictates the composition of the oral microbiome. For instance, polymicrobial interactions can improve the ability of C albicans to form biofilm, which subsequently increases the colonisation of oral mucosa by the yeast. Polymicrobial interactions of C albicans with other members of the oral microbiome have been reported to enhance the malignant phenotype of oral cancer cells, such as the attachment to extracellular matrix molecules (ECM) and epithelial‐mesenchymal transition (EMT). Polymicrobial interactions may also exacerbate an inflammatory response in oral epithelial cells, which may play a role in carcinogenesis. This review focuses on the role of polymicrobial interactions between C albicans and other oral microorganisms, including its role in promoting oral carcinogenesis.  相似文献   

9.
Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida–streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual‐species biofilms. Three‐dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast‐embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild‐type strain, or pseudohyphal‐forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms.  相似文献   

10.
Oral candidosis is a common problem in immunocompromised patients, and whilst Candida albicans is regarded as the principal cause of infection, other non‐Candida albicans Candida (NCAC) species are increasingly being recognized as human pathogens. Relatively little is known about the virulence factors associated with NCAC species, and the aim of this study was to use a reconstituted human oral epithelium (RHOE) to examine epithelial infection withCandida parapsilosis. Strains originating from the oral and vaginal mucosa and from the urinary tract were all shown to colonize RHOE in a strain‐dependent manner. Strain differences were found in the colonizing morphology and in the extent of invasion of the RHOE. Low invasion of RHOE was detected for strains after 12 h, whereas extensive tissue damage was evident after 24 h when assessed using histological examination and lactate dehydrogenase activity determination. Tissue damage was reduced in the presence of pepstatin A, although C. parapsilosis invasion of the tissue was not inhibited. Real‐time polymerase chain reaction of secreted aspartyl proteinase (SAP) genes (SAPP1–3) showed that expression was strain dependent, with an increased expression generally occurring for Candida infecting RHOE compared with planktonic equivalents. In summary, C. parapsilosis was not highly invasive of RHOE but did induce significant tissue damage, which could relate to specific SAPgene expression.  相似文献   

11.
ATP‐binding cassette (ABC) proteins are ubiquitous in prokaryotes and eukaryotes. They are involved in energy‐dependent transport of molecules across membranes. ABC proteins are often promiscuous transporters that can translocate a variety of substrates. In oral fungi, especially in Candida species, they have been implicated as major contributors to the high‐level azole resistance of clinical isolates from infections that do not respond to drug therapy. Although this is predominantly due to efflux of azoles from the cells, ABC proteins can contribute to fungal drug resistance in other ways as well. Cells in biofilms are notoriously resistant to antifungal agents. ABC proteins can contribute to this resistance through the efflux of drugs. Biofilms are complex communities of myriad microorganisms which, to survive in such a milieu, need to communicate with, and respond to, other microorganisms and their products. ABC proteins are involved in the secretion of fungal mating factors and quorum sensing molecules. These molecules affect biofilm structure and behavior that can result in increased drug resistance. Hence, ABC proteins make multiple contributions to oral fungal drug resistance through a variety of responses to environmental signals.  相似文献   

12.
Interactions between Candida albicans, saliva and saliva‐coated oral surfaces are initial events in the colonization of the oral cavity by this commensal yeast, which can cause oral diseases such as candidiasis and denture stomatitis. Candida albicans also colonizes silicone voice prostheses, and the microbial biofilm formed can impair valve function, necessitating frequent prosthesis replacement. We have previously shown that saliva promoted binding of C. albicans cells to silicone in vitro, and that the selective binding of specific salivary proteins to voice prosthesis silicone mediated attachment of C. albicans cells. The C. albicans cells adhered to a polypeptide (or polypeptides) of ~36 kDa eluted from saliva‐treated silicone. We show here that a protein of similar size was identified in replicate blots of the eluate from saliva‐treated silicone when the blots were probed with antibodies to human SPLUNC2, a salivary protein with reported microbial agglutination properties. In addition, SPLUNC2 was depleted from saliva that had been incubated with silicone coupons. To determine whether SPLUNC2 is a yeast‐binding protein, SPLUNC2 cDNA was expressed in Escherichia coli. Purified recombinant His‐tagged protein (SPLUNC2r) bound to silicone as demonstrated by immunoblot analysis of an eluate from SPLUNC2r‐treated silicone coupons and 35S‐radiolabelled C. albicans cells adhered in a dose‐dependent manner to SPLUNC2r‐coated silicone. We conclude that SPLUNC2 binds to silicone and acts as a receptor for C. albicans adherence to, and subsequent colonization of, voice prosthesis silicone.  相似文献   

13.
Candida dubliniensis, an emerging oral pathogen, phenotypically resembles Candida albicans so closely that it is easily misidentified as such. The aim of the present study was to evaluate the usefulness of two phenotypic methods, growth at 45°C and 2,3,5‐triphenyltetrazolium chloride (TTC) reduction, for confirming presumptive identification of C. dubliniensis and C. albicans by colony color on CHROMagar Candida (CAC) medium. A combination of these methods was used to establish the prevalence of oral C. dubliniensis in an Italian population of 45 human immunodeficiency virus (HIV)‐infected subjects. Twenty‐two samples (48.9%) were positive for yeasts on CAC medium producing a total of 37 fungal isolates. The colony color and 45°C growth ability test correctly identified all C. dubliniensis and C. albicans isolates (5/37, 13.5%, and 16/37, 43.2%, respectively), while assessment of TTC reduction misidentified one C. albicans isolate. The isolation rate of C. dubliniensis was 11.1% (5/45 patients). All of the C. dubliniensis isolates were highly susceptible to fluconazole (MIC = 0.5 µg/ml). The combination of CAC medium screening with growth at 45°C and TTC reduction tests may represent a simple, reliable and inexpensive identification protocol for C. dubliniensis.  相似文献   

14.
Aim: To determine the prevalence of oral Candida carriage, candidal quantification, and various subtypes of Candida species in oral submucous fibrosis patients and healthy individuals. Methods: The study comprised 30 clinically‐diagnosed and ‐staged oral submucous fibrosis patients aged 20–40 years, and 20 age‐ and sex‐matched controls. Buccal mucosa was sampled by sterile swab technique. Each sample was inoculated on Sabouraud’s dextrose agar and CHROMagar culture media. Candida species identification was done using the KB006 Candida identification kit. Results: Eleven (36.67%) cases in the study group, and two (10%) cases in the control group, yielded Candida on culture. The value of CFU/mL increased with an increased duration of betel quid chewing habit. All Candida‐positive oral submucous fibrosis patients complained of a burning sensation. Candida albicans and Candida tropicalis were the most common species in the oral submucous fibrosis cases. Candida dubliniensis was isolated in both the study and control groups. Conclusions: Our observations in this study affirm that oral submucous fibrosis favors the colonization of Candida. Mucosal alterations due to the underlying disease process or betel quid chewing, coupled with other factors, might lead to candidal colonization, even in the absence of clinically‐related mycotic manifestations.  相似文献   

15.
16.
17.
Oral leukoplakias, particularly non-homogenous types, are often invaded by yeasts, with Candida albicans being the dominant species. The more advanced precancerous leukoplakia lesions yield more rarely occurring biotypes of C. albicans, suggesting a causal role for these biotypes in the malignant transformation. N-nitroso-benzylmethylamine (NBMA) is a compound able to induce carcinoma of the esophagus and the oral cavity in the rat. The catalytic potential of yeasts, isolated from leukoplakia lesions and from normal mucosa, to produce NBMA from the precursors N-benzyl-methylamine and nitrite was assessed at pH 6.8. The yeast strains differed in nitrosation potential, ranking from 0 to 1.2 μg NBMA/106 cells. C. albicans strains of the more rarely occurring biotypes showed the highest nitrosation potential, whereas C. tropicalis, C. parapsilosis, and Torulopsis glabrata were ranked lower. Strains with high nitrosation potential were generally isolated from lesions with more advanced precancerous changes. Thus, further evidence is provided supporting the hypothesis that yeasts play a causal role in oral cancer by means of endogenous nitrosamine production.  相似文献   

18.
Pathobiology of dental caries is complex. Data from recent molecular microbiologic studies have further redefined the role of the oral microbiome in the etiology of dental caries. This new information challenges the conventional view on the hegemony of classic cariogenic prokaryotes such as Streptococcus mutans in caries etiology, and raises the intriguing possibility of the participation of the eukaryotic oral fungal pathogen Candida in the caries process. The virulence attributes of Candida species such as their acidogenicity and aciduric nature, the ability to develop profuse biofilms, ferment and assimilate dietary sugars, and produce collagenolytic proteinases are all indicative of their latent cariogenic potential. Based on the above, oral candidal counts have been used by some as a caries risk indicator. On the contrary, other studies suggest that Candida is merely a passenger extant in an acidic cariogenic milieu, and not a true pathogen. In this review, we critically examine the varying roles of Candida, and traditionally accepted cariogens such as the mutans group of streptococci in the pathobiology of dental caries. The weight of available data tends to imply that Candida may play a pivotal role as a secondary agent perpetuating the carious process, especially in dentinal caries.  相似文献   

19.
As a member of subgingival multispecies biofilms, Tannerella forsythia is commonly associated with periodontitis. The bacterium has a characteristic cell surface (S‐) layer modified with a unique O‐glycan. Both the S‐layer and the O‐glycan were analyzed in this study for their role in biofilm formation by employing an in vitro multispecies biofilm model mimicking the situation in the oral cavity. Different T. forsythia strains and mutants with characterized defects in cell surface composition were incorporated into the model, together with nine species of select oral bacteria. The influence of the T. forsythia S‐layer and attached glycan on the bacterial composition of the biofilms was analyzed quantitatively using colony‐forming unit counts and quantitative real‐time polymerase chain reaction, as well as qualitatively by fluorescence in situ hybridization and confocal laser scanning microscopy. This revealed that changes in the T. forsythia cell surface did not affect the quantitative composition of the multispecies consortium, with the exception of Campylobacter rectus cell numbers. The localization of T. forsythia within the bacterial agglomeration varied depending on changes in the S‐layer glycan, and this also affected its aggregation with Porphyromonas gingivalis. This suggests a selective role for the glycosylated T. forsythia S‐layer in the positioning of this species within the biofilm, its co‐localization with P. gingivalis, and the prevalence of C. rectus. These findings might translate into a potential role of T. forsythia cell surface structures in the virulence of this species when interacting with host tissues and the immune system, from within or beyond the biofilm.  相似文献   

20.
The discovery and characterisation of a novel species of Candida, termed Candida dubliniensis, associated with oral candidosis in HIV-infected individuals is described. These organisms share several phenotypic characteristics in common with Candida albicans and Candida stellatoidea, including the ability to produce germ tubes and chlamydospores. However, in contrast to these latter two species, C. dubliniensis isolates produce abundant chlamydospores, which are often arranged in contiguous pairs, triplets and other multiples suspended from a single suspensor cell. They belong to C. albicans serotype A and exhibit atypical substrate assimilation profiles. Genomic DNA fingerprinting analysis with the C. albicons-specific probe 27A and five different oligonucleotide probes consisting of short repeat sequence-containing motifs, demonstrated that C. dubliniensis has a distinct genomic organisation relative to C. albicans and C. stellatoidea. This was confirmed by karyotype analysis and random amplified polymorphic DNA (RAPD) analysis. Comparison of 500 bp of the V3 variable region of the large ribosomal subunit genes from 14 separate C. dubliniensis isolates and the corresponding sequences from C. albicans, C. stellatoidea, C. tropicalis, C. glabrata, C. parapsilosis, C. kefyr and C. krusei demonstrated that the C. dubliniensis isolates formed a homogenous cluster (100% similarity), representing a discrete taxon within the genus Candida that was significantly different from the other species analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号