首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
Interactions between the primary motor cortices of each hemisphere during unilateral hand movements appear to be inhibitory, although there is evidence that the strengths of these interactions are asymmetrical. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the effects of motor task duration and hand used on unilateral movement-related BOLD signal increases and decreases in the hand region of primary motor cortex (M1) of each hemisphere in six right-handed volunteers. Significant task-related BOLD signal decreases were observed in ipsilateral M1 during single and brief bursts of unilateral movements for both hands. However, these negative-to-baseline responses were found to intensify with increasing movement duration in parallel with greater task-related increases in contralateral M1. Movement-related BOLD signal decreases in ipsilateral M1 were also stronger for the right, dominant hand than for the left hand in our right-handed subjects. These findings would be consistent with the existence of interhemispheric interactions between M1 of each hemisphere, whereby increased neuronal activation in M1 of one hemisphere induces reduced neuronal activity in M1 of the opposite hemisphere. The observation of a hemispheric asymmetry in inhibition between M1 of each hemisphere agrees well with previous neuroimaging and electrophysiological data. These findings are discussed in the context of current understanding of the physiological origins of negative-to-baseline BOLD responses.  相似文献   

2.
We studied motor representation in well-recovered stroke patients. Eighteen right-handed stroke patients and eleven age-matched control subjects underwent functional Magnetic Resonance Imaging (fMRI) while performing unimanual index finger (abduction-adduction) and wrist movements (flexion-extension) using their recovered and non-affected hand. A subset of these patients underwent Transcranial Magnetic Stimulation (TMS) to elicit motor evoked potentials (MEP) in the first dorsal interosseous muscle of both hands. Imaging results suggest that good recovery utilizes both ipsi- and contralesional resources, although results differ for wrist and index finger movements. Wrist movements of the recovered arm resulted in significantly greater activation of the contralateral (lesional) and ipsilateral (contralesional) primary sensorimotor cortex (SM1), while comparing patients to control subjects performing the same task. In contrast, recovered index finger movements recruited a larger motor network, including the contralateral SM1, Supplementary Motor Area (SMA) and cerebellum when patients were compared to control subjects. TMS of the lesional hemisphere but not of the contralesional hemisphere induced MEPs in the recovered hand. TMS parameters also revealed greater transcallosal inhibition, from the contralesional to the lesional hemisphere than in the reverse direction. Disinhibition of the contralesional hemisphere observed in a subgroup of our patients suggests persistent alterations in intracortical and transcallosal (interhemispheric) interactions, despite complete functional recovery.  相似文献   

3.
目的应用fMRI研究双手交替运动模式下中央沟附近脑肿瘤患者运动功能重组的方式及特征.方法6名正常受试者和14名脑肿瘤患者采用双手交替对指运动模式行fMRI扫描,比较正常受试者与脑肿瘤患者脑激活的异同.结果正常人单手对指运动主要激活运动手对侧的大脑半球和同侧小脑半球.脑肿瘤患者非受累手运动所致的激活与正常受试者基本相同;而当受累手运动时,则出现运动功能的重组,包括肿瘤对侧正常半球内M1区的代偿性激活、肿瘤侧半球MI活动的减弱、双侧SMA等次级运动中枢激活区的增大以及双侧小脑半球的激活.结论采取双手交替运动模式,fMRI不仅显示了受累侧运动区的变形与移位,而且揭示了一种新的功能重组模式,即运动功能重组可能涉及分布于全脑的整个神经网络.  相似文献   

4.
fMRI评价正常老年人腕关节被动运动下脑激活区   总被引:2,自引:1,他引:2       下载免费PDF全文
目的 用功能磁共振技术观察正常老年人双侧腕关节被动运动时脑区激活情况.方法 对30例正常的右利手老年受试者分别进行双侧腕关节被动运动的功能MR扫描,采用SPM2软件进行数据分析和脑功能区定位.结果 利手(右手)运动主要激活对侧感觉运动皮质、运动前区,双侧辅助运动区、后顶叶及同侧小脑;非利手运动时除激活上述脑区外,还激活了同侧运动感觉区和对侧小脑,且对侧运动前区、双侧辅助运动区和同侧小脑的激活体积明显大于利手腕关节运动.结论 被动运动依赖于大脑皮质和小脑等许多与运动相关的脑功能区的参与;与利手腕关节运动相比,非利手腕关节运动更依赖于对侧PMC、双侧SMA和同侧小脑等运动区.  相似文献   

5.
This study investigated the motor control pathway using both functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) in a patient with left hemiparesis with an infarction on the posterior limb of the right internal capsule. fMRI was performed using the blood oxygen level-dependent technique at 1.5 T with a standard head coil. The motor activation task consisted of hand grasp-release movements in 1-Hz cycles. TMS was performed using a butterfly coil; the intersection of the wings (center of the coil) was applied tangentially to the scalp 1.0 cm apart. Stimulation was performed at 100% of maximal output. Motor evoked potentials (MEPs) from both abductor pollicis brevis (APB) muscles were obtained simultaneously. fMRI showed that the unaffected (left) primary sensorimotor cortex (SM1) was activated by movements of the unaffected (right) hand. Conversely, the bilateral SM1 were activated by movements of the affected (left) hand. Brain mapping using TMS showed that ipsilateral MEPs were obtained at the affected (left) APB muscle when the unaffected (left) motor cortex was stimulated. We concluded that the ipsilateral motor pathway from the unaffected motor cortex to the affected hand was present in this patient.  相似文献   

6.
It is well established that the premotor cortex has a central role in the selection of movements. The role of parts of the parietal cortex in movement control has proved more difficult to describe but appears to be related to the preparation and the redirection of movements and movement intentions. We have referred to some of these processes as motor attention. It has been known since the time of William James that covert motor attention can be directed to an upcoming movement just as visuospatial attention can be directed to a location in space. While some parietal regions, particularly in the right hemisphere, are concerned with covert orienting and the redirecting of covert orienting it may be useful to consider other parietal regions, in the anterior inferior parietal lobule and in the posterior superior parietal lobule, particularly in the left hemisphere, as contributing to motor attention. Such parts of the parietal lobe are activated in neuroimaging experiments when subjects covertly prepare movements or switch intended movements. Lesions or transcranial magnetic stimulation (TMS) affect the redirecting of motor attention. The difficulties apraxic patients experience when sequencing movements may partly be due to an inability to redirect motor attention from one movement to another. The role of the premotor cortex in selecting movements is also lateralized to the left hemisphere. Damage to left hemisphere movement selection mechanisms may also contribute to apraxia. If, however, it remains intact after a stroke then the premotor cortex may contribute to the recovery of arm movements. A group of patients with unilateral left hemisphere lesions and impaired movements in the contralateral right hand was studied. Functional magnetic resonance imaging showed that in some cases the premotor cortex in the intact hemisphere was more active when the stroke-affected hand was used. TMS in the same area in the same patients had the most disruptive effect on movements. In summary, patterns of motor impairment and recovery seen after strokes can partly be explained with reference to the roles of the parietal and premotor cortices in motor attention and selection.  相似文献   

7.
Studies of unilateral finger movement in right-handed subjects have shown asymmetrical patterns of activation in primary motor cortex. Some studies have measured a similar asymmetry in the supplementary motor area (SMA), but others have not. To shed more light on the symmetry of function in the SMA, we used path analysis of functional MRI data to investigate effective connectivity during a unilateral finger movement task. We observed a slight asymmetry in task activation: left SMA was equally active during movement of either hand, while right SMA was more active for left-hand movement, suggesting a dominant role of left SMA. In addition, we tested for a corresponding asymmetry in the influence of SMA on sensorimotor cortex (SMC) using a path model based on the well-established principle that SMA is involved in motor control and SMC in execution. We observed that the influence of left SMA on left SMC increased during right-hand movement, and the influence of left SMA on right SMC increased during left-hand movement. However, there was no significant hand-dependent change in the influences of the right SMA. This asymmetry in connectivity implies that left SMA does play a dominant role in unilateral movements of either hand in right handers. The experiment also provides a basis for further studies of motor system connectivity in healthy or patient populations.  相似文献   

8.
We present the case of 28-year-old man with schizencephaly who had mild left hemiparesis with mirror movement. Brain mapping using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) for both hand muscles was done to evaluate his neurologic state. Motor evoked potential (MEP) from both abductor pollicis brevis (APB) muscles was obtained simultaneously. fMRI showed that the left primary sensorimotor cortex became active when the right fingers performed the flexion-extension exercise. The left primary sensorimotor cortex, left prefrontal area, and both supplementary motor areas were activated with flexion-extension exercise of the left hand. Brain mapping for both APB muscles using TMS showed that no MEP was evoked in the right hemisphere, but a APB total of 5 sites were evoked in the left hemisphere simultaneously. The optimal scalp site for both APB muscles was present at the same site. The MEPs of both muscles which were evoked by stimulation of the optimal scalp site, showed similar latencies, amplitudes, and figures of potential. The similarities in both MEPs and the same optimal scalp site support the assumption that MEPs of both APB muscles are produced by the corticospinal tract originating from the same motor cortex. Our results showed that the ipsilateral motor pathway extended from the unaffected left hemisphere to both hand muscles. This finding may reflect functional reorganization of motor area in a patient with congenital brain disorder.  相似文献   

9.
目的评价中央区脑膜瘤患者和对照组手指运动相关的脑激活部位之区别,探讨脑功能重组的机制。方法对1例脑膜瘤患者和2例对照进行近红外脑功能成像检查。试验采用模块设计、单手对指任务,经数据处理、统计和脑功能区定位,比较患者和对照激活区域的差别。结果对照组进行单手运动时对侧大脑半球运动区激活,脑膜瘤患者右手运动时左侧初级感觉运动皮层激活,而左手运动时右侧半球(患侧)在肿瘤后外侧初级感觉运动皮层的通道出现较弱激活,而左侧半球(健侧)初级感觉运动皮层、补充运动区、运动前区出现较强激活。结论功能性近红外脑功能成像检查可检测中央区脑肿瘤患者手部运动相关的脑功能重组。  相似文献   

10.
Each hemisphere is known to be also involved in controlling the ipsilateral arm, but with an asymmetry favoring the dominant hemisphere. However, the relative role of primary and secondary motor areas in ipsilateral control is not well defined. We used whole brain functional magnetic resonance imaging in healthy human subjects to differentiate between contributions from primary and secondary areas during discrete unilateral distal finger and proximal shoulder movements. It was found that ipsilateral distal movements activated secondary areas only, while sparing or even significantly deactivating the primary sensorimotor cortex. Ipsilateral proximal movements substantially activated both SM1 and secondary areas. A newly defined small territory within the precentral gyrus, extending from the premotor cortex and intruding toward SM1, showed an activation pattern corresponding to secondary motor areas. Finally, the effects of hemispheric dominance were confirmed, but attributed exclusively to secondary areas. These new imaging findings agree well with functional requirements as well as established anatomical and neurophysiological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号