首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The microRNA (miR)-200s and their negative regulator ZEB1 have been extensively studied in the context of the epithelial–mesenchymal transition. Loss of miR-200s has been shown to enhance cancer aggressiveness and metastasis, whereas replacement of miR-200 miRNAs has been shown to inhibit cell growth in several types of tumors, including lung cancer. Here, we reveal a novel function of miR-200c, a member of the miR-200 family, in regulating intracellular reactive oxygen species signaling and explore a potential application for its use in combination with therapies known to increase oxidative stress such as radiation. We found that miR-200c overexpression increased cellular radiosensitivity by direct regulation of the oxidative stress response genes PRDX2, GAPB/Nrf2, and SESN1 in ways that inhibits DNA double-strand breaks repair, increase levels of reactive oxygen species, and upregulate p21. We used a lung cancer xenograft model to further demonstrate the therapeutic potential of systemic delivery of miR-200c to enhance radiosensitivity in lung cancer. Our findings suggest that the antitumor effects of miR-200c result partially from its regulation of the oxidative stress response; they further suggest that miR-200c, in combination with radiation, could represent a therapeutic strategy in the future.  相似文献   

2.
MicroRNAs (miRNAs) regulate gene expression. It has been suggested that obtaining miRNA expression profiles can improve classification, diagnostic, and prognostic information in oncology. Here, we sought to comprehensively identify the miRNAs that are overexpressed in lung cancer by conducting miRNA microarray expression profiling on normal lung versus adjacent lung cancers from transgenic mice. We found that miR-136, miR-376a, and miR-31 were each prominently overexpressed in murine lung cancers. Real-time RT-PCR and in situ hybridization (ISH) assays confirmed these miRNA expression profiles in paired normal-malignant lung tissues from mice and humans. Engineered knockdown of miR-31, but not other highlighted miRNAs, substantially repressed lung cancer cell growth and tumorigenicity in a dose-dependent manner. Using a bioinformatics approach, we identified miR-31 target mRNAs and independently confirmed them as direct targets in human and mouse lung cancer cell lines. These targets included the tumor-suppressive genes large tumor suppressor 2 (LATS2) and PP2A regulatory subunit B alpha isoform (PPP2R2A), and expression of each was augmented by miR-31 knockdown. Their engineered repression antagonized miR-31–mediated growth inhibition. Notably, miR-31 and these target mRNAs were inversely expressed in mouse and human lung cancers, underscoring their biologic relevance. The clinical relevance of miR-31 expression was further independently and comprehensively validated using an array containing normal and malignant human lung tissues. Together, these findings revealed that miR-31 acts as an oncogenic miRNA (oncomir) in lung cancer by targeting specific tumor suppressors for repression.  相似文献   

3.
MicroRNAs are increasingly implicated in the modulation of the progression of various cancers. We previously observed that KAI1 C-terminal interacting tetraspanin (KITENIN) is highly expressed in sporadic human colorectal cancer (CRC) tissues and hence the functional KITENIN complex acts to promote progression of CRC. However, it remains unknown that microRNAs target KITENIN and whether KITENIN-targeting microRNAs modulate CRC cell motility and colorectal tumorigenesis. Here, through bioinformatic analyses and functional studies, we showed that miR-124, miR-27a, and miR-30b negatively regulate KITENIN expression and suppress the migration and invasion of several CRC cell lines via modulation of KITENIN expression. Through in vitro and in vivo induction of mature microRNAs using a tetracycline-inducible system, miR-124 was found to effectively inhibit the invasion of CT-26 colon adenocarcinoma cells and tumor growth in a syngeneic mouse xenograft model. Constitutive overexpression of precursor miR-124 in CT-26 cells suppressed in vivo tumorigenicity and resulted in decreased expression of KITENIN as well as that of MYH9 and SOX9, which are targets of miR-124. Thus, our findings identify that KITENIN-targeting miR-124, miR-27a, and miR-30b function as endogenous inhibitors of CRC cell motility and demonstrate that miR-124 among KITENIN-targeting microRNAs plays a suppressor role in colorectal tumorigenesis.  相似文献   

4.
The most commonly diagnosed and most lethal subtype of lung cancer is lung adenocarcinoma (LUAD). Therefore, more detailed understanding of the potential mechanism and identification of potential targets of lung adenocarcinoma is needed. A growing number of reports reveals that long non-coding RNAs (lncRNAs) play crucial roles in cancer progression. In present study, we found that lncRNA LINC00115 was upregulated in LUAD tissues and cells. Functional studies revealed that LINC00115 knockdown inhibits the proliferation, growth, invasion, and migration of LUAD cells. Mechanically, we indicated that miR-154-3p is target microRNA of LINC00115, and the effect of downregulated LINC00115 on LUAD cells was partially reversed by the miR-154-3p antisense oligonucleotide (ASO-miR-154-3p). Further investigation revealed that Specificity protein 3 (Sp3) directly interacted with miR-154-3p, and the Sp3 level was positively correlated with the LINC00115 expression. Rescue experiments further showed that Sp3 overexpression partially restored the effect of downregulated LINC00115 on LUAD cells. Similarly, in vivo experiments confirmed that downregulated LINC00115 inhibited xenograft growth and Sp3 expression. Our results demonstrated that LINC00115 knockdown inhibited LUAD progression via sponging miR-154-3p to modulate Sp3 expression. These data indicate that the LINC00115/miR-154-3p/Sp3 axis can be a potential therapeutic target of LUAD.  相似文献   

5.
6.
Lung metastasis and relapse in osteosarcoma (OS) patients indicate poor prognosis. Here, we identified significantly decreased expression of miR-382 in highly metastatic OS cell lines and relapsed OS samples compared to their parental cell lines and primary OS samples, respectively. In addition, our clinical data showed that the miR-382 expression level was inversely associated with relapse and positively associated with metastasis-free survival in OS patients. The overexpression of miR-382 suppressed epithelial–mesenchymal transition (EMT) and metastasis. This overexpression also decreased the cancer stem cell (CSC) population and function in OS cells. In contrast, inhibition of miR-382 stimulated EMT and metastasis and increased CSC population in OS cells. In addition, our in vivo experiments showed that the overexpression of miR-382 inhibited CSC-induced tumor formation, and the combination of miR-382 with doxorubicin prevented disease relapse in OS patients. Furthermore, we demonstrated that miR-382 exerted its tumor-suppressing potential by directly targeting Y box-binding protein 1 (YB-1) in OS. Taken together, our findings suggest that miR-382 functions as a tumor suppressor function and that the overexpression of miR-382 is a novel strategy to inhibit tumor metastasis and prevent CSC-induced relapse in OS.  相似文献   

7.
8.
9.
10.
miR-21 can act as an oncogene. MSH2 has been reported that it involved in the DNA mismatch repair (MMR) system and overexpression of MSH2 can induce cell apoptosis. We predicted that MSH2-3′-untranslated region (3′-UTR) was targeted by miR-21 using microRNA analysis softwares. To further explore the roles of miR-21 and MSH2 in A549 cells, we constructed pcDNA-GFP-msh-UTR vector (including MSH2-3′-UTR) to transfect A549 cells with miR-21, GFP positive cells were estimated under a fluorescence microscopy and by flow cytometry. We found miR-21 could obviously downregulate the expression of MSH2, which was further proved by western blotting. Moreover, we treated A549 cells with cisplatin and found that cisplatin could inhibit A549 cell growth in vitro and in vivo. We also found that cisplatin could downregulate miR-21 expression, while increase MSH2 expression in A549 cells. Our results demonstrated that cisplatin could upregulate the expression of MSH2 through downregulating miR-21 to inhibit A549 cell proliferation, which provides new gene targets for drug design or cancer therary.  相似文献   

11.
12.
Angiopoietin-like protein 1 (ANGPTL1) is a potent regulator of angiogenesis. Growing evidence suggests that ANGPTL family proteins not only target endothelial cells but also affect tumor cell behavior. In a screen of 102 patients with lung cancer, we found that ANGPTL1 expression was inversely correlated with invasion, lymph node metastasis, and poor clinical outcomes. ANGPTL1 suppressed the migratory, invasive, and metastatic capabilities of lung and breast cancer cell lines in vitro and reduced metastasis in mice injected with cancer cell lines overexpressing ANGPTL1. Ectopic expression of ANGPTL1 suppressed the epithelial-to-mesenchymal transition (EMT) by reducing the expression of the zinc-finger protein SLUG. A microRNA screen revealed that ANGPTL1 suppressed SLUG by inducing expression of miR-630 in an integrin α1β1/FAK/ERK/SP1 pathway–dependent manner. These results demonstrate that ANGPTL1 represses lung cancer cell motility by abrogating the expression of the EMT mediator SLUG.  相似文献   

13.
目的探讨mir-17-5p、mir-92a、let-7b表达水平与非小细胞肺癌顺铂耐药关系。 方法以人非小细胞肺癌细胞系A549及其耐药株A549/DDP为研究对象,采用RT-PCR法检测mir-17-5p、mir-92a及let-7b在细胞中的表达水平,采用cck8检测其细胞存活情况,采用细胞克隆平台方法,检测转染前后细胞的增殖情况,采用流式细胞仪检测转染前后细胞的凋亡情况。 结果(1) A549/DDP细胞mir-17-5p的表达水平是A549细胞的2.11±0.25倍(P<0.05);A549/DDP细胞mir-92a的表达水平是A549细胞的 7.40 ± 1.05 倍(P<0.05);而A549/DDP 细胞let-7b 的表达水平是A549 细胞的(26.54 ± 2.90)%(P<0.05);(2)A549 转染mir-17-5pmimic,mir-92a mimic 以及let-7b inhibitor 后对顺铂的敏感性下降(P<0.05);A549/ddp 转染mir-17-5p inhibitor, mir-92a inhibitor以及let-7b mimic后对顺铂的敏感性增加(P<0.05);(3)A549转染mir-17-5p mimic,mir-92a mimic以及let-7b inhibitor 后,细胞形成克隆集落数量数量多于对照组(P<0.05);而A549/ddp 转染mir-17-5p inhibitor,mir-92a inhibitor 以及 let-7b mimic 后,细胞形成克隆集落数量数量少于对照组(P<0.05);(4)A549 转染mir-17-5p mimic,mir-92a mimic 以及let-7b inhibitor后,细胞凋亡率明显低于对照组(P<0.05);而a549/ddp转染mir-17-5p inhibitor,mir-92a inhibitor以及let-7b mimic后, 细胞凋亡率明显高于对照组(P<0.05)。结论Mir-17-5p、mir-92a表达水平升高,let-7b表达水平下降,可以促进肺癌细胞增殖, 抑制其凋亡以及使肺癌细胞对顺铂敏感性下降。   相似文献   

14.
Recurrence and metastasis result in a poor prognosis for breast cancer patients. Recent studies have demonstrated that microRNAs (miRNAs) play vital roles in the development and metastasis of breast cancer. In this study, we investigated the therapeutic potential of miR-34a in breast cancer. We found that miR-34a is downregulated in breast cancer cell lines and tissues, compared with normal cell lines and the adjacent nontumor tissues, respectively. To explore the therapeutic potential of miR-34a, we designed a targeted miR-34a expression plasmid (T-VISA-miR-34a) using the T-VISA system, and evaluated its antitumor effects, efficacy, mechanism of action, and systemic toxicity. T-VISA-miR-34a induced robust, persistent expression of miR-34a, and dramatically suppressed breast cancer cell growth, migration, and invasion in vitro by downregulating the protein expression levels of the miR-34a target genes E2F3, CD44, and SIRT1. In an orthotopic mouse model of breast cancer, intravenous injection of T-VISA-miR-34a:liposomal complex nanoparticles significantly inhibited tumor growth, prolonged survival, and did not induce systemic toxicity. In conclusion, T-VISA-miR-34a lead to robust, specific overexpression of miR-34a in breast cancer cells and induced potent antitumor effects in vitro and in vivo. T-VISA-miR-34a may provide a potentially useful, specific, and safe-targeted therapeutic approach for breast cancer.  相似文献   

15.
Long non-coding RNA cancer susceptibility candidate 2 (lncRNA CASC2) is a tumor suppressor and has been proved to contribute to chemotherapy efficacy. However, the effect of CASC2 on cisplatin cytotoxicity in non-small cell lung cancer (NSCLC) is unclear. The present study aimed to investigate the role of CASC2 in regulating cisplatin cytotoxicity in NSCLC cells. Herein, we found that CASC2 was low-expressed, while miR-18a and miR-21 were over-expressed in NSCLC cell lines. CASC2 enhanced the inhibition effect of cisplatin on cell viability. Down-regulation of miR-18a and miR-21 exhibited the similar effect to CASC2 and mimics of miR-18a and miR-21 displayed the opposite effect to CASC2. MiR-18a and miR-21 were two targets of CASC2 in NSCLC. PTEN was found to be a target of miR-18a and miR-21 in NSCLC. CASC2 overexpression increased PTEN expression level and reduced the ratio of p-Akt/Akt. MiR-18a or miR-21 mimics attenuated the effect of CASC2 overexpression on the PTEN expression and ratio of p-Akt/Akt. The results suggested that CASC2 enhanced cisplatin-induced viability inhibition of NSCLC cells via PTEN/PI3K/Akt pathway through suppressing miR-18a and miR-21 expression.

Long non-coding RNA cancer susceptibility candidate 2 (lncRNA CASC2) is a tumor suppressor and has been proved to contribute to chemotherapy efficacy.  相似文献   

16.
Late-stage breast cancer metastasis is driven by dysregulated TGF-β signaling, but the underlying molecular mechanisms have not been fully elucidated. We attempted to recapitulate tumor and metastatic microenvironments via the use of biomechanically compliant or rigid 3D organotypic cultures and combined them with global microRNA (miR) profiling analyses to identify miRs that were upregulated in metastatic breast cancer cells by TGF-β. Here we establish miR-181a as a TGF-β–regulated “metastamir” that enhanced the metastatic potential of breast cancers by promoting epithelial-mesenchymal transition, migratory, and invasive phenotypes. Mechanistically, inactivation of miR-181a elevated the expression of the proapoptotic molecule Bim, which sensitized metastatic cells to anoikis. Along these lines, miR-181a expression was essential in driving pulmonary micrometastatic outgrowth and enhancing the lethality of late-stage mammary tumors in mice. Finally, miR-181a expression was dramatically and selectively upregulated in metastatic breast tumors, particularly triple-negative breast cancers, and was highly predictive for decreased overall survival in human breast cancer patients. Collectively, our findings strongly implicate miR-181a as a predictive biomarker for breast cancer metastasis and patient survival, and consequently, as a potential therapeutic target in metastatic breast cancer.  相似文献   

17.
Pulmonary metastases are the main cause of death in patients with osteosarcoma, however, the molecular mechanisms of metastasis are not well understood. To detect lung metastasis-related microRNA (miRNA) in human osteosarcoma, we compared parental (HOS) and its subclone (143B) human osteosarcoma cell lines showing lung metastasis in a mouse model. miR-143 was the most downregulated miRNA (P < 0.01), and transfection of miR-143 into 143B significantly decreased its invasiveness, but not cell proliferation. Noninvasive optical imaging technologies revealed that intravenous injection of miR-143, but not negative control miRNA, significantly suppressed lung metastasis of 143B (P < 0.01). To search for miR-143 target mRNA in 143B, microarray analyses were performed using an independent RNA pool extracted by two different comprehensive miR-143-target mRNA collecting systems. Western blot analyses revealed that MMP-13 was mostly protein downregulated by miR-143. Immunohistochemistry using clinical samples clearly revealed MMP-13-positive cells in lung metastasis-positive cases, but not in at least three cases showing higher miR-143 expression in the no metastasis group. Taken together, these data indicated that the downregulation of miR-143 correlates with the lung metastasis of human osteosarcoma cells by promoting cellular invasion, probably via MMP-13 upregulation, suggesting that miRNA could be used to develop new molecular targets for osteosarcoma metastasis.  相似文献   

18.
Loss of microRNA-29 (miR-29) is known to be a mechanism of transforming growth factor-β (TGF-β)-mediated pulmonary fibrosis, but the therapeutic implication of miR-29 for pulmonary fibrosis remains unexplored. The present study investigated whether miR-29 had therapeutic potential for lung disease induced by bleomycin in mice. In addition, the signaling mechanisms that regulated miR-29 expression were investigated in vivo and in vitro. We found that miR-29 was a downstream target gene of Smad3 and negatively regulated by TGF-β/Smad signaling in fibrosis. This was evidenced by the findings that mice or pulmonary fibroblasts null for Smad3 were protected against bleomycin or TGF-β1-induced loss of miR-29 along with fibrosis in vivo and in vitro. Interestingly, overexpression of miR-29 could in turn negatively regulated TGF-β and connective tissue growth factor (CTGF) expression and Smad3 signaling. Therefore, Sleeping Beauty (SB)-mediated miR-29 gene transfer into normal and diseased lung tissues was capable of preventing and treating pulmonary fibrosis including inflammatory macrophage infiltration induced by bleomycin in mice. In conclusion, miR-29 is negatively regulated by TGF-β/Smad3 and has a therapeutic potential for pulmonary fibrosis. SB-mediated miR-29 gene therapy is a non-invasive therapeutic strategy for lung disease associated with fibrosis.  相似文献   

19.
Abnormal microRNA expression is a common and important feature of human malignancies. Matrix metalloproteinase 2 (MMP2), which has been reported in several cancers, plays important roles in cancer progression. However, the microRNA regulatory mechanism on MMP2 expression remains unclear. In this study, we first detected MMP2 and microRNA-29a (miR-29a) expression in oral squamous carcinoma (OSCC) specimens, which showed that MMP2 was higher in OSCC cancer tissues than adjacent tissues but that miR-29a was lower in OSCC cancer tissues than adjacent tissues. Then, we confirmed that miR-29a, which directly targeted 3′-UTR of MMP2 gene, negatively regulated MMP2 expression by miR-29a transfection and luciferase reporter assay. Exogenous overexpression of miR-29a inhibited OSCC cell invasion and anti-apoptosis significantly in vitro. Whereas, knockdown of miR-29a promoted OSCC cell invasion and induced drug-resistance in vitro. This study suggests that miR-29a plays an inhibiting role in the progression of OSCC, which may be a potentially therapeutic approach in the future.  相似文献   

20.
Glioblastoma (GBM) is the most common and lethal brain tumor in adults. Glioma-initiating cells (GICs) are stem-like cells that have been implicated in glioblastoma progression and recurrence; however, the distinct properties of GICs and non-GICs within GBM tumors are largely uncharacterized. Here, we evaluated stem cell–associated microRNA (miR) expression in GICs from GBM patients and GICs derived from xenografted human glioma cell lines and determined that miR-33a promotes GIC growth and self-renewal. Moreover, evaluation of a GBM tissue array revealed that higher miR-33a expression was associated with poor prognosis of GBM patients. Antagonizing miR-33a function in GICs reduced self-renewal and tumor progression in immune-compromised mice, whereas overexpression of miR-33a in non-GICs promoted the display of features associated with GICs. We identified the mRNAs encoding phosphodiesterase 8A (PDE8A) and UV radiation resistance–associated gene (UVRAG) as direct miR-33a targets. PDE8A and UVRAG negatively regulated the cAMP/PKA and NOTCH pathways, respectively; therefore, miR-33a–dependent reduction of these proteins promoted growth and self-renewal of GICs by enhancing PKA and NOTCH activity. Furthermore, in GBM specimens, there was an inverse correlation between the expression levels of miR-33a and PDE8A and UVRAG expression. These findings reveal a miR-33a–centered signaling network that promotes GIC maintenance and has potential as a therapeutic target for GBM treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号