首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Research over the last decade has uncovered roles for bile acids (BAs) that extend beyond their traditional functions in regulating lipid digestion and cholesterol metabolism. BAs are now recognized as signaling molecules that interact with both plasma membrane and nuclear receptors. Emerging evidence indicates that by interacting with these receptors, BAs regulate their own synthesis, glucose and energy homeostasis, and other important physiological events. Herein, we provide a comprehensive review of the actions of BAs on cardiovascular function. In the heart and the systemic circulation, BAs interact with plasma membrane G-protein-coupled receptors, for example, TGR5 and muscarinic receptors, and nuclear receptors, for example, the farnesoid (FXR) and pregnane (PXR) xenobiotic receptors. BA receptors are expressed in cardiovascular tissue, however, the mechanisms underlying BA-mediated regulation of cardiovascular function remain poorly understood. BAs reduce heart rate by regulating channel conductance and calcium dynamics in sino-atrial and ventricular cardiomyocytes and regulate vascular tone via both endothelium-dependent and -independent mechanisms. End-stage liver disease, obstructive jaundice, and intrahepatic cholestasis of pregnancy are prominent conditions in which elevated serum BAs alter vascular dynamics. This review focuses on BAs as newly recognized signaling molecules that modulate cardiovascular function.  相似文献   

2.
BA (bile acid) formation is considered an important final step in RCT (reverse cholesterol transport). HDL (high-density lipoprotein) has been reported to transport BAs. We therefore investigated the effects of monogenic disturbances in human HDL metabolism on serum concentrations and lipoprotein distributions of the major 15 BA species and their precursor C4 (7α-hydroxy-4-cholesten-3-one). In normolipidaemic plasma, approximately 84%, 11% and 5% of BAs were recovered in the LPDS (lipoprotein-depleted serum), HDL and the combined LDL (low-density lipoprotein)/VLDL (very-low-density lipoproteins) fraction respectively. Conjugated BAs were slightly over-represented in HDL. For C4, the respective percentages were 23%, 21% and 56% (41% in LDL and 15% in VLDL) respectively. Compared with unaffected family members, neither HDL-C (HDL-cholesterol)-decreasing mutations in the genes APOA1 [encoding ApoA-I (apolipoprotein A-I], ABCA1 (ATP-binding cassette transporter A1) or LCAT (lecithin:cholesterol acyltransferase) nor HDL-C-increasing mutations in the genes CETP (cholesteryl ester transfer protein) or LIPC (hepatic lipase) were associated with significantly different serum concentrations of BA and C4. Plasma concentrations of conjugated and secondary BAs differed between heterozygous carriers of SCARB1 (scavenger receptor class B1) mutations and unaffected individuals (P<0.05), but this difference was not significant after correction for multiple testing. Moreover, no differences in the lipoprotein distribution of BAs in the LPDS and HDL fractions from SCARB1 heterozygotes were observed. In conclusion, despite significant recoveries of BAs and C4 in HDL and despite the metabolic relationships between RCT and BA formation, monogenic disorders of HDL metabolism do not lead to altered serum concentrations of BAs and C4.  相似文献   

3.
4.
Emerging roles of urotensin-II in cardiovascular disease   总被引:4,自引:0,他引:4  
Urotensin-II (UII) is a highly potent endogenous peptide within the cardiovascular system. Through stimulation of Galphaq-coupled UT receptors, UII mediates contraction of vascular smooth muscle and endothelial-dependent vasorelaxation, and positive inotropy in human right atrium and ventricle. A pathogenic role of the UT receptor system is emerging in cardiovascular disease states, with evidence for up-regulation of the UT receptor system in patients with congestive heart failure (CHF), pulmonary hypertension, cirrhosis and portal hypertension, and chronic renal failure. In vitro and in vivo studies show that under pathophysiological conditions, UII might contribute to cardiomyocyte hypertrophy, extracellular matrix production, enhanced vasoconstriction, vascular smooth muscle cell hyperplasia, and endothelial cell hyper-permeability. Single nucleotide polymorphisms of the UII gene may also impart a genetic predisposition of patients to diabetes. Therefore, the UT receptor system is a potential therapeutic target in the treatment of cardiac, pulmonary, and renal diseases. UT receptor antagonists are currently being developed to prevent and/or reverse the effects of over-activated UT receptors by the endogenous ligand. This review describes UII peptide and converting enzymes, and UT receptors in the cardiovascular system, focusing on pathophysiological roles of UII in the heart and blood vessels.  相似文献   

5.
Bile acids (BAs) are cholesterol derivatives synthesized in the liver and then secreted into the intestine for lipid absorption. There are numerous scientific reports describing BAs, especially secondary BAs, as strong carcinogens or promoters of colon cancers. Firstly, BAs act as strong stimulators of colorectal cancer (CRC) initiation by damaging colonic epithelial cells, and inducing reactive oxygen species production, genomic destabilization, apoptosis resistance, and cancer stem cells-like formation. Consequently, BAs promote CRC progression via multiple mechanisms, including inhibiting apoptosis, enhancing cancer cell proliferation, invasion, and angiogenesis. There are diverse signals involved in the carcinogenesis mechanism of BAs, with a major role of epidermal growth factor receptor, and its down-stream signaling, involving mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and nuclear factor kappa-light-chain-enhancer of activated B cells. BAs regulate numerous genes including the human leukocyte antigen class I gene, p53, matrix metalloprotease, urokinase plasminogen activator receptor, Cyclin D1, cyclooxygenase-2, interleukin-8, and miRNAs of CRC cells, leading to CRC promotion. These evidence suggests that targeting BAs is an efficacious strategies for CRC prevention and treatment.  相似文献   

6.
Recently the field of cholestasis has expanded enormously reflecting an improved understanding of the molecular mechanisms underlying bile secretion and its perturbation in chronic cholestatic disease. Novel anti-cholestatic therapeutic options have been developed for patients not favorably responding to ursodeoxycholic acid (UDCA), the current standard treatment for cholestatic liver disease. Important novel treatment targets now also include nuclear receptors involved in bile acid (BA) homoeostasis like farnesoid X receptor and G protein-coupled receptors e.g., the G-protein-coupled BA receptor “transmembrane G coupled receptor 5”. Fibroblast growth factor-19 and enterohepatic BA transporters also deserve attention as additional drug targets as does the potential treatment agent norUDCA. In this review, we discuss recent and future promising therapeutic agents and their potential molecular mechanisms in cholestatic liver disorders.  相似文献   

7.
8.
5-hydroxytryptamine receptors in the human cardiovascular system   总被引:5,自引:0,他引:5  
The human cardiovascular system is exposed to plasma 5-hydroxytryptamine (5-HT, serotonin), usually released from platelets. 5-HT can produce harmful acute and chronic effects. The acute cardiac effects of 5-HT consist of tachycardia (preceded on occasion by a brief reflex bradycardia), increased atrial contractility and production of atrial arrhythmias. Acute inotropic, lusitropic and arrhythmic effects of 5-HT on human ventricle become conspicuous after inhibition of phosphodiesterase (PDE) activity. Human cardiostimulation is mediated through 5-HT4 receptors. Atrial and ventricular PDE3 activity exerts a protective role against potentially harmful cardiostimulation. Chronic exposure to high levels of 5-HT (from metastatic carcinoid tumours), the anorectic drug fenfluramine and its metabolites, as well as the ecstasy drug 3,4-methylenedioxymethamphetamine (MDMA) and its metabolite 3,4-methylenedioxyamphetamine (MDA) are associated with proliferative disease and thickening of cardiac valves, mediated through 5-HT2B receptors. 5-HT2B receptors have an obligatory physiological role in murine cardiac embryology but whether this happens in humans requires research. Congenital heart block (CHB) is, on occasion, associated with autoantibodies against 5-HT4 receptors. Acute vascular constriction by 5-HT is usually shared by 5-HT1B and 5-HT2A receptors, except in intracranial arteries which constrict only through 5-HT1B receptors. Both 5-HT1B and 5-HT2A receptors can mediate coronary artery spasm but only 5-HT1B receptors appear involved in coronary spasm of patients treated with triptans or with Prinzmetal angina. 5-HT2A receptors constrict the portal venous system including oesophageal collaterals in cirrhosis. Chronic exposure to 5-HT can contribute to pulmonary hypertension through activation of constrictor 5-HT1B receptors and proliferative 5-HT2B receptors, and possibly through direct intracellular effects.  相似文献   

9.
Thyroid hormone is well known for its profound direct effects on cardiovascular function and metabolism. Recent evidence, however, suggests that the hormone also regulates these systems indirectly through the central nervous system. While some of the molecular mechanisms underlying the hormone’s central control of metabolism have been identified, its actions in the central cardiovascular control have remained enigmatic. Here, we describe a previously unknown population of parvalbuminergic neurons in the anterior hypothalamus that requires thyroid hormone receptor signaling for proper development. Specific stereotaxic ablation of these cells in the mouse resulted in hypertension and temperature-dependent tachycardia, indicating a role in the central autonomic control of blood pressure and heart rate. Moreover, the neurons exhibited intrinsic temperature sensitivity in patch-clamping experiments, providing a new connection between cardiovascular function and core temperature. Thus, the data identify what we believe to be a novel hypothalamic cell population potentially important for understanding hypertension and indicate developmental hypothyroidism as an epigenetic risk factor for cardiovascular disorders. Furthermore, the findings may be beneficial for treatment of the recently identified patients that have a mutation in thyroid hormone receptor α1.  相似文献   

10.
Regional distributions of ligand binding sites of 12 different neurotransmitter receptors (glutamatergic: AMPA, kainate, NMDA; GABAergic: GABA(A), GABA(B); cholinergic: muscarinic M2, nicotinic; adrenergic: alpha1, alpha2; serotonergic: 5-HT1A, 5-HT2; dopaminergic: D1) were studied in human postmortem brains by means of quantitative receptor autoradiography. Binding site densities were measured in the superior parietal lobule (SPL) (areas 5L, 5M, 5Ci, and different locations within Brodmann's area (BA) 7), somatosensory (BA 2), and visual cortical areas (BA 17, and different locations within BAs 18 and 19). Similarities of receptor distribution between cortical areas were analyzed by cluster analysis, uni- and multivariate statistics of mean receptor densities (averaged over all cortical layers), and profiles representing the laminar distribution patterns of receptors. A considerable heterogeneity of regional receptor densities and laminar patterns between the sites was found in the SPL and the visual cortex. The most prominent regional differences were found for M2 receptors. In the SPL, rostrocaudally oriented changes of receptor densities were more pronounced than those in mediolateral direction. The receptor distribution in the rostral SPL was more similar to that of the somatosensory cortex, whereas caudal SPL resembled the receptor patterns of the dorsolateral extrastriate visual areas. These results suggest a segregation of the different SPL areas based on receptor distribution features typical for somatosensory or visual areas, which fits to the dual functional role of this cortical region, i.e., the involvement of the human SPL in visuomotor and somatosensory motor transformations.  相似文献   

11.
Dysbiosis in the intestinal microflora can affect the gut production of microbial metabolites, and toxic substances can disrupt the barrier function of the intestinal wall, leading to the development of various diseases. Decreased levels of Clostridium subcluster XIVa (XIVa) are associated with the intestinal dysbiosis found in inflammatory bowel disease (IBD) and Clostridium difficile infection (CDI). Since XIVa is a bacterial group responsible for the conversion of primary bile acids (BAs) to secondary BAs, the proportion of intestinal XIVa can be predicted by determining the ratio of deoxycholic acid (DCA)/[DCA + cholic acid (CA)] in feces orserum. For example, serum DCA/(DCA+CA) was significantly lower in IBD patients than in healthy controls, even in the remission period. These results suggest that a low proportion of intestinal XIVa in IBD patients might be a precondition for IBD onset but not a consequence of intestinal inflammation. Another report showed that a reduced serum DCA/(DCA + CA) ratio could predict susceptibility to CDI. Thus, the BA profile, particularly the ratio of secondary to primary BAs, can serve as a surrogate marker of the intestinal dysbiosis caused by decreased XIVa.  相似文献   

12.
The actions of opioid agonist and antagonist drugs have not been well characterized in the heart and cardiovascular system. This stems from the limited role opioid receptors have been perceived to have in the regulation of the cardiovascular system. Instead, the focus of opioid receptor research, for many years, relates to the characterization of the actions of opioid drugs in analgesia associated with receptor activation in the CNS. However, recent studies suggest that opioid receptors have a role in the heart and cardiovascular system. While some of these actions may be mediated by activation of peripheral opioid receptors, others are not, and may result from direct or receptor-independent actions on cardiac tissue and the peripheral vascular system. This review will outline some of the diverse molecular mechanisms that may be responsible for the cardiovascular actions of opioids, and will characterize the role opioid receptors have in several cardiovascular pathophysiological disease states, including hypertension, heart failure, and ischaemic arrhythmogenesis. In many instances, it would appear that the effects of opioid agonists (and antagonists) in cardiovascular disease models may be mediated by opioid receptor-independent actions of these drugs.  相似文献   

13.
Congenital heart disease results from genetic defects that are manifested at early stages of embryogenesis. The mouse is the preferred animal model for studies of mammalian embryonic development and for an increasing number of human disease models. A number of genes identified in the mouse are critical for normal cardiovascular development, but an understanding of the underlying mechanisms regulating heart development is still incomplete, in part because of the lack of methods to measure hemodynamics in live mouse embryos. We describe the development of a 40-MHz ultrasound scanner, which allows image-guided continuous-wave and pulsed Doppler blood flow measurements in mouse embryos, in utero, at the critical early developmental stages. Doppler waveforms acquired from mouse embryonic umbilical vessels, descending aorta, and cardiac ventricles are presented to demonstrate the utility of the method. By combining image-guided ultrasound Doppler with the many available mouse mutants, this approach should lead to new insights into embryonic cardiovascular structure–function relationships.  相似文献   

14.
The receptor regulated adenylyl cyclase system is a multiprotein complex which is a member of the family of the receptor-effector systems whose signal is transduced by heterotrimetric GTP-binding proteins. The system consists of stimulatory and inhibitory receptors (Rs and Ri), stimulatory and inhibitory G proteins (Gs and Gi) and the adenylyl cyclase enzyme (C). While quite specific in situ, receptors (stimulatory or inhibitory) from one source can activate the appropriate G protein from other cell types or species which in turn can act on C from other sources. Studies with chimeric proteins have shown that the various specificities (stimulatory or inhibitory) can be mapped to defined domains in both receptors and G proteins. The mechanism by which the heterotrimetric G proteins couple to the stimulatory and inhibitory signals is discussed in detail. Specifically, the data supporting collision coupling vs the shuttle mechanism is reviewed, as well as the role of βγ subunits in both the stimulatory and inhibitory signals.  相似文献   

15.
Endothelin receptor antagonists   总被引:8,自引:0,他引:8  
Endothelin receptor antagonists (ERAs) have been developed to block the effects of endothelin-1 (ET-1) in a variety of cardiovascular conditions. ET-1 is a powerful vasoconstrictor with mitogenic or co-mitogenic properties, which acts through the stimulation of 2 subtypes of receptors [endothelin receptor subtype A (ETA) and endothelin receptor subtype B (ETB) receptors]. Endogenous ET-1 is involved in a variety of conditions including systemic and pulmonary hypertension (PH), congestive heart failure (CHF), vascular remodeling (restenosis, atherosclerosis), renal failure, cancer, and cerebrovascular disease. The first dual ETA/ETB receptor blocker, bosentan, has already been approved by the Food and Drug Administration for the treatment of pulmonary arterial hypertension (PAH). Trials of endothelin receptor antagonists in heart failure have been completed with mixed results so far. Studies are ongoing on the effects of selective ETA antagonists or dual ETA/ETB antagonists in lung fibrosis, cancer, and subarachnoid hemorrhage. While non-peptidic ET-1 receptor antagonists suitable for oral intake with excellent bioavailability have become available, proven efficacy is limited to pulmonary hypertension, but it is possible that these agents might find a place in the treatment of several cardiovascular and non-cardiovascular diseases in the coming future.  相似文献   

16.
Cardiovascular and metabolic effects of natriuretic peptides   总被引:2,自引:0,他引:2  
Natriuretic peptides (NP) are essential in mammals to regulate blood volume and pressure. The functional roles of NP are not limited to natriuresis and diuresis. Several peripheral and central actions of the peptides have been characterized. Studies on transgenic mice have revealed their key function in the regulation of cardiomyocyte growth. Plasma NP levels increase in patients with cardiovascular disorders and heart failure. They represent useful clinical markers for clinicians to diagnose heart diseases. The recent discovery of their potent lipolytic action in adipose tissue is a breakthrough in cardiovascular medicine. This new function of NP in the regulation of lipid metabolism offers interesting questions in the field of obesity, diabetes and cardiovascular diseases. This review will briefly describe the effects of NP on the cardiovascular system and lipid metabolism.  相似文献   

17.
The endothelin (ET) system consists of 3 ET isopeptides, several isoforms of activating peptidases, and 2 G-protein-coupled receptors, ETA and ETB, that are linked to multiple signaling pathways. In the cardiovascular system, the components of the ET family are expressed in several tissues, notably the vascular endothelium, smooth muscle cells, and cardiomyocytes. There is general agreement that ETs play important physiological roles in the regulation of normal cardiovascular function, and excessive generation of ET isopeptides has been linked to major cardiovascular pathologies, including hypertension and heart failure. However, several recent clinical trials with ET receptor antagonists were disappointing. In the present review, the authors take the stance that ETs are mainly and foremost essential regulators of cardiovascular function, hence that antagonizing normal ET actions, even in patients, will potentially do more harm than good. To support this notion, we describe the predominant roles of ETs in blood vessels, which are (indirect) vasodilatation and ET clearance from plasma and interstitial spaces, against the background of the subcellular mechanisms mediating these effects. Furthermore, important roles of ETs in regulating and adapting heart functions to different needs are addressed, including recent progress in understanding the effects of ETs on diastolic function, adaptations to changes in preload, and the interactions between endocardial-derived ET-1 and myocardial pump function. Finally, the potential dangers (and gains) resulting from the suppression of excessive generation or activity of ETs occurring in some cardiovascular pathological states, such as hypertension, myocardial ischemia, and heart failure, are discussed.  相似文献   

18.
BackgroundBile acids (BAs) are known mediators of glucose metabolism that are altered in type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM). We hypothesised that post-prandial BA fractions are changed in women with Insulin resistance (IR) after recovery from GDM using homeostatic model assessment (HOMA-IR).Methods45 women median age 44(31–47) with previous GDM, including 20 with HOMA-IR >2.8 and 25 age-matched controls with HOMA-IR ≤ 2.8 were studied. After an overnight fast, all underwent an oral glucose tolerance test. Blood samples were collected at baseline and every 30 min for 120 min and analysed for glucose on automated platform and for total BAs, their conjugates and fractions using liquid-chromatography tandem mass-spectrometry. Baseline samples were analysed for insulin on automated platform. Delta (Δ) change (difference between baseline and maximal post-prandial response) were calculated. Data is presented as median (IQR).ResultsFasting primary and unconjugated BAs were higher in women with HOMA-IR >2.8 vs. those with HOMA-IR ≤ 2.8 [0.24 (0.16–0.33) vs 0.06(0.04–0.22) μmol/L and 0.91(0.56–1.84) μmol/L vs. 0.69(0.32–0.89) μmol/L respectively. ∆ taurine-conjugated BAs was higher in women with HOMA-IR ≤ 2.8 than those with HOMA-IR > 2.8 [0.33(0.20–0.54) vs 0.23(0.13–0.34) μmol/L]. Fasting glucose and non-12α-hydroxylated BAs were negatively correlated in women with HOMA-IR >2.8 (all p < 0.05).ConclusionsFollowing GDM, individuals with HOMA-IR >2.8 have altered conjugated and non-12α-hydroxylated fractions of BAs. It remains to be elucidated if the altered BA metabolism is a contributing factor to the pathogenesis or a consequence of GDM.  相似文献   

19.
20.
Dietary macronutrients and micronutrients play important roles in human health. On the other hand, the excessive energy derived from food is stored in the form of triacylglycerol. A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase, fatty acid synthase, fatty acid elongases, and desaturases. As a micronutrient, vitamin A is essential for the health of humans. Recently, vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism. This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis. It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo. It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis. Future research directions are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号