首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Magnetic resonance diffusion tensor imaging (DTI) enables the discrimination of white matter pathways before myelination is evident histologically or on conventional MRI. In this investigation, 14 premature neonates with no evidence of white matter abnormalities by conventional MRI were studied with DTI. A custom MR-compatible incubator with a novel high sensitivity neonatal head coil and improved acquisition and processing techniques were employed to increase image quality and spatial resolution. The technical improvements enabled tract-specific quantitative characterization of maturing white matter, including several association tracts and subcortical projection tracts not previously investigated in neonates by MR. Significant differences were identified between white matter pathways, with earlier maturing commissural tracts of the corpus callosum, and deep projection tracts of the cerebral peduncle and internal capsule exhibiting lower mean diffusivity (Dav) and higher fractional anisotropy (FA) than later maturing subcortical projection and association pathways. Maturational changes in white matter tracts included reductions in Dav and increases in FA with age due primarily to decreases in the two minor diffusion eigenvalues (lambda2 and lambda3). This work contributes to the understanding of normal white matter development in the preterm neonatal brain, an important step toward the use of DTI for the improved evaluation and treatment of white matter injury of prematurity.  相似文献   

2.
Normal aging is accompanied by decline in selective cognitive and motor functions. A concurrent decline in regional white matter integrity, detectable with diffusion tensor imaging (DTI), potentially contributes to waning function. DTI analysis of white matter loci indicates an anterior-to-posterior gradient distribution of declining fractional anisotropy (FA) and increasing diffusivity with age. Quantitative fiber tracking can be used to determine regional patterns of normal aging of fiber systems and test the functional ramifications of the DTI metrics. Here, we used quantitative fiber tracking to examine age effects on commissural (genu and splenium), bilateral association (cingulate, inferior longitudinal fasciculus and uncinate), and fornix fibers in 12 young and 12 elderly healthy men and women and tested functional correlates with concurrent assessment of a wide range of neuropsychological abilities. Principal component analysis of cognitive and motor tests on which the elderly achieved significantly lower scores than the young group was used for data reduction and yielded three factors: Problem Solving, Working Memory, and Motor. Age effects--lower FA or higher diffusivity--in the elderly were prominent in anterior tracts, specifically, genu, fornix, and uncinate fibers. Differential correlations between FA or diffusivity in fiber tracts and scores on Problem Solving, Working Memory, or Motor factors provide convergent validity to the biological meaningfulness of the integrity of the fibers tracked. The observed pattern of relations supports the possibility that regional degradation of white matter fiber integrity is a biological source of age-related functional compromise and may have the potential to limit accessibility to alternative neural systems to compensate for compromised function.  相似文献   

3.
Diffusion tensor imaging (DTI) is an exciting new MRI modality that can reveal detailed anatomy of the white matter. DTI also allows us to approximate the 3D trajectories of major white matter bundles. By combining the identified tract coordinates with various types of MR parameter maps, such as T2 and diffusion properties, we can perform tract-specific analysis of these parameters. Unfortunately, 3D tract reconstruction is marred by noise, partial volume effects, and complicated axonal structures. Furthermore, changes in diffusion anisotropy under pathological conditions could alter the results of 3D tract reconstruction. In this study, we created a white matter parcellation atlas based on probabilistic maps of 11 major white matter tracts derived from the DTI data from 28 normal subjects. Using these probabilistic maps, automated tract-specific quantification of fractional anisotropy and mean diffusivity were performed. Excellent correlation was found between the automated and the individual tractography-based results. This tool allows efficient initial screening of the status of multiple white matter tracts.  相似文献   

4.
目的 应用磁共振弥散张量成像(DTI)定量分析复发-缓解型多发性硬化(RRMS)患者表现正常的脑干白质纤维束的改变.方法 对50例RRMS患者(RRMS组)及25名年龄和性别相匹配的健康志愿者(对照组)行磁共振扫描,获取常规MR图像和DTI图像.比较两组脑干主要纤维束(皮质脊髓束/皮质脑桥束、小脑上、中、下脚纤维束和内侧丘系纤维束)的部分各向异性分数(FA)和平均弥散系数(MD)的变化.结果 排除年龄、性别等因素影响后,经ANCOVA协方差分析,RRMS组患者皮质脊髓束/皮质脑桥束(L:P=0.030;R:P=0.020)、小脑下脚(L:P=0.030;R:P=0.037)、小脑上脚(L:P=0.036;R:P=0.041)、内侧丘系(L:P=0.014;R:P=0.035)的FA值较对照组明显降低.RRMS组患者皮质脊髓束/皮质脑桥束(L:P=0.004;R:P=0.046)、小脑下脚(L:P=0.047;R:P=0.011)、小脑上脚(L:P=0.021;R:P=0.011)、内侧丘系(L:P=0.002;R:P=0.044)的MD值较对照组明显增高.小脑中脚的MD值及FA值两组间差异均无统计学意义(P>0.05).RRMS患者表现正常脑干白质纤维束的MD值及FA值与脑实质分数(BPF)、T2病灶容积之间均无相关性.结论 RRMS患者表现正常脑干白质纤维束DTI的异常发现,提示上述纤维束存在微观病变,推测病变可能是局部隐匿性病灶导致的髓鞘脱失、轴突破坏.  相似文献   

5.
This study assessed microstructural development in four regions of the human cerebral cortex during preterm maturation using diffusion tensor imaging (DTI), compared to the macrostructural development of cortical gyration evaluated using three-dimensional volumetric T1-weighted MR imaging. Thirty-seven premature infants of estimated gestational age (EGA) ranging from 25 to 38 weeks were prospectively enrolled and imaged in an MR-compatible neonatal incubator with a high-sensitivity neonatal head coil. Cortical gyration was measured quantitatively as the ratio of gyral height to width on the volumetric MR images in four regions bilaterally (superior frontal, superior occipital, precentral, and postcentral gyri). Mean diffusivity (D(av)), fractional anisotropy (FA-the fraction of D(av) that is anisotropic), and the three DTI eigenvalues (components of diffusivity radial and tangential to the pial surface of cortex) were measured in the same cortical regions. Cortical gyration scores, FA, and radial diffusivity were all significantly correlated with EGA (P < 0.0001). However, in multivariate analysis, no significant relationship (P > 0.05) was found between DTI parameters and cortical gyration beyond their common association with estimated gestational age. Pre- and postcentral gyri had significantly lower anisotropy than the superior occipital and superior frontal gyri (P < 0.05), indicating that DTI is sensitive to regional heterogeneity in cortical development. Maturational changes in the DTI eigenvalues of cortical gray matter were found to differ from those that have previously been described in developing white matter, with a significant age-related decline in the radial diffusivity (P < 0.0001) but not in the tangential diffusivities (P > 0.05).  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is characterized by selective degeneration of motor neurons. Here we examine the ability of magnetic resonance imaging (MRI) to measure axonal degeneration in the lumbar spinal cord of the SOD1 mouse model of ALS. Diffusion tensor imaging (DTI) was successful in detecting axonal spinal cord damage in vivo. Fractional anisotropy (FA) values were reduced exclusively in the ventral white matter tracts of the lumbar spinal cord of ALS-affected SOD1 mice compared to wild-type littermates, with this effect becoming more pronounced with disease progression. The reduced FA values were therefore limited to white matter tracts arising from the motor neurons, whereas sensory white matter fibers were preserved. Significant decreases in water diffusion parallel to the white matter fibers or axial diffusivity were observed in the SOD1 mice, which can be attributed to the axonal degeneration observed by electron microscopy. At the same time, radial diffusivity perpendicular to the spinal column increased in the SOD1 mice, reflecting reduced myelination. These results demonstrate the usefulness of MRI in tracking disease progression in live animals and will aid in the assessment of treatment efficacy. This method could also potentially be adapted to aid the diagnosis and assessment of ALS progression in humans.  相似文献   

7.
Few large-scale studies have been done to characterize the normal human brain white matter growth in the first years of life. We investigated white matter maturation patterns in major fiber pathways in a large cohort of healthy young children from birth to age two using diffusion parameters fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (RD). Ten fiber pathways, including commissural, association and projection tracts, were examined with tract-based analysis, providing more detailed and continuous spatial developmental patterns compared to conventional ROI based methods. All DTI data sets were transformed to a population specific atlas with a group-wise longitudinal large deformation diffeomorphic registration approach. Diffusion measurements were analyzed along the major fiber tracts obtained in the atlas space. All fiber bundles show increasing FA values and decreasing radial and axial diffusivities during development in the first 2years of life. The changing rates of the diffusion indices are faster in the first year than the second year for all tracts. RD and FA show larger percentage changes in the first and second years than AD. The gender effects on the diffusion measures are small. Along different spatial locations of fiber tracts, maturation does not always follow the same speed. Temporal and spatial diffusion changes near cortical regions are in general smaller than changes in central regions. Overall developmental patterns revealed in our study confirm the general rules of white matter maturation. This work shows a promising framework to study and analyze white matter maturation in a tract-based fashion. Compared to most previous studies that are ROI-based, our approach has the potential to discover localized development patterns associated with fiber tracts of interest.  相似文献   

8.
Examination of the three-dimensional axonal pathways in the developing brain is key to understanding the formation of cerebral connectivity. By tracing fiber pathways throughout the entire brain, diffusion tractography provides information that cannot be achieved by conventional anatomical MR imaging or histology. However, standard diffusion tractography (based on diffusion tensor imaging, or DTI) tends to terminate in brain areas with low water diffusivity, indexed by low diffusion fractional anisotropy (FA), which can be caused by crossing fibers as well as fibers with less myelin. For this reason, DTI tractography is not effective for delineating the structural changes that occur in the developing brain, where the process of myelination is incomplete, and where crossing fibers exist in greater numbers than in the adult brain. Unlike DTI, diffusion spectrum imaging (DSI) can define multiple directions of water diffusivity; as such, diffusion tractography based on DSI provides marked flexibility for delineation of fiber tracts in areas where the fiber architecture is complex and multidirectional, even in areas of low FA. In this study, we showed that FA values were lower in the white matter of newborn (postnatal day 0; P0) cat brains than in the white matter of infant (P35) and juvenile (P100) cat brains. These results correlated well with histological myelin stains of the white matter: the newborn kitten brain has much less myelin than that found in cat brains at later stages of development. Using DSI tractography, we successfully identified structural changes in thalamo-cortical and cortico-cortical association tracts in cat brains from one stage of development to another. In newborns, the main body of the thalamo-cortical tract was smooth, and fibers branching from it were almost straight, while the main body became more complex and branching fibers became curved reflecting gyrification in the older cats. Cortico-cortical tracts in the temporal lobe were smooth in newborns, and they formed a sharper angle in the later stages of development. The cingulum bundle and superior longitudinal fasciculus became more visible with time. Within the first month after birth, structural changes occurred in these tracts that coincided with the formation of the gyri. These results show that DSI tractography has the potential for mapping morphological changes in low FA areas associated with growth and development. The technique may also be applicable to the study of other forms of brain plasticity, including future studies in vivo.  相似文献   

9.
Since the introduction of diffusion weighted imaging (DWI) as a method for examining neural connectivity, its accuracy has not been formally evaluated. In this study, we directly compared connections that were visualized using injected neural tract tracers (WGA-HRP) with those obtained using in-vivo diffusion tensor imaging (DTI) tractography. First, we injected the tracer at multiple sites in the brain of a macaque monkey; second, we reconstructed the histological sections of the labeled fiber tracts in 3D; third, we segmented and registered the fibers (somatosensory and motor tracts) with the anatomical in-vivo MRI from the same animal; and last, we conducted fiber tracing along the same pathways on the DTI data using a classical diffusion tracing technique with the injection sites as seeds. To evaluate the performance of DTI fiber tracing, we compared the fibers derived from the DTI tractography with those segmented from the histology. We also studied the influence of the parameters controlling the tractography by comparing Dice superimposition coefficients between histology and DTI segmentations. While there was generally good visual agreement between the two methods, our quantitative comparisons reveal certain limitations of DTI tractography, particularly for regions at remote locations from seeds. We have thus demonstrated the importance of appropriate settings for realistic tractography results.  相似文献   

10.
Motor deficits in relapsing remitting multiple sclerosis (RRMS) patients are monitored using standard measures of disability that assess performance ranging from walking ability to hand function, thus reflecting involvement of a variety of motor pathways. We investigated the relative contributions of diffuse white matter damage and focal lesions using diffusion tensor imaging (DTI), in predicting future worsening of hand function in RRMS. The nine hole peg test (NHPT), a test of fine hand motor control, was used to measure baseline upper limb function in 16 controls and 25 RRMS patients, and then performed at follow-up on 22 of these patients at 6 and 12 months. Tract-based spatial statistics (TBSS) were used across the whole brain as a non-hypothesis driven method for localizing white matter changes associated with motor deficits. Subsequently, we used probabilistic fiber tractography in the corticospinal tracts (CST) and the transcallosal hand motor (TCHM) fibers to assess the predictive power of diffusion metrics and/or functionally relevant visible lesion volumes on the decline of hand motor function over the next 12 months. While fractional anisotropy (FA) and radial diffusivity (RD) of both pathways were strongly associated with NHPT performance at baseline, only RD of the TCHM fibers was predictive of NHPT decline over the next 12 months. Neither total visible lesion load nor pathway specific lesion loads were indicative of NHPT performance or progression. The TCHM fibers may play an important role in modifying the effects of MS pathology on fine motor control, and RD in these fibers may be a sensitive biomarker for future disability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号