首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vascular dysfunction resulting in compromised blood-brain barrier (BBB) integrity is evident in aging and disease. Although the complement C3a/C3a receptor (C3a/C3aR) axis influences normal brain aging and disease progression, the mechanisms governing endothelial C3aR–mediated neurovascular inflammation and BBB permeability remain unexplored. In this issue of the JCI, Propson et al. investigated endothelial C3a/C3aR signaling in normal, aged, and neurodegenerative mouse models. Endothelial C3aR signaling modulated age-dependent increases in VCAM1, initiated peripheral lymphocyte infiltration, and enhanced microglial activity. Increased calcium release downstream of C3aR signaling disrupted the vascular endothelial cadherin (VE-cadherin) junctions, increased BBB permeability, and degraded vascular structure and function. Mice lacking C3aR (C3ar1–/–) and mice treated with a C3aR antagonist showed attenuated age-related microglial reactivity and neurodegeneration. These results confirm that complement-mediated signaling impacts vascular health and BBB function in normal aging and neurodegenerative disease, suggesting that complement inhibitors represent a therapeutic option for cerebral microvascular dysfunction.  相似文献   

2.
The low-density lipoprotein receptor–related protein 1 (LRP1) is an endocytic and cell signaling transmembrane protein. Endothelial LRP1 clears proteinaceous toxins at the blood–brain barrier (BBB), regulates angiogenesis, and is increasingly reduced in Alzheimer’s disease associated with BBB breakdown and neurodegeneration. Whether loss of endothelial LRP1 plays a direct causative role in BBB breakdown and neurodegenerative changes remains elusive. Here, we show that LRP1 inactivation from the mouse endothelium results in progressive BBB breakdown, followed by neuron loss and cognitive deficits, which is reversible by endothelial-specific LRP1 gene therapy. LRP1 endothelial knockout led to a self-autonomous activation of the cyclophilin A–matrix metalloproteinase-9 pathway in the endothelium, causing loss of tight junctions underlying structural BBB impairment. Cyclophilin A inhibition in mice with endothelial-specific LRP1 knockout restored BBB integrity and reversed and prevented neuronal loss and behavioral deficits. Thus, endothelial LRP1 protects against neurodegeneration by inhibiting cyclophilin A, which has implications for the pathophysiology and treatment of neurodegeneration linked to vascular dysfunction.  相似文献   

3.
4.
Cerebral malaria (CM) is caused by the binding of Plasmodium falciparum–infected erythrocytes (IEs) to the brain microvasculature, leading to inflammation, vessel occlusion, and cerebral swelling. We have previously linked dual intercellular adhesion molecule-1 (ICAM-1)– and endothelial protein C receptor (EPCR)–binding P. falciparum parasites to these symptoms, but the mechanism driving the pathogenesis has not been identified. Here, we used a 3D spheroid model of the blood–brain barrier (BBB) to determine unexpected new features of IEs expressing the dual-receptor binding PfEMP1 parasite proteins. Analysis of multiple parasite lines shows that IEs are taken up by brain endothelial cells in an ICAM-1–dependent manner, resulting in breakdown of the BBB and swelling of the endothelial cells. Via ex vivo analysis of postmortem tissue samples from CM patients, we confirmed the presence of parasites within brain endothelial cells. Importantly, this discovery points to parasite ingress into the brain endothelium as a contributing factor to the pathology of human CM.  相似文献   

5.
Despite the fact that neutrophils are essential for the protection from invading pathogens, hyperactive neutrophils may elicit detrimental cerebral damage after severe trauma. The neutrophil interactions with the neurovascular unit entail endothelial dysfunction involving endothelial leakage, formation of edema, coagulation abnormalities, disturbed hemodynamics, tissue infiltration etc. These elements of the "whole body inflammation," designated systemic inflammatory response syndrome (SIRS) in conjunction with intracerebral proinflammatory activities, are important triggers of post-traumatic cerebral damage and mortality according to the "second hit" concept. From the immunologic point of view, the brain is an immune privileged site, known to resist autodestructive inflammatory activity much more efficiently than other organs because of the highly efficient diverse functions of the blood-brain barrier (BBB). However, both the underlying strategy of the BBB to maintain cerebral protecting functions against the post-traumatic neutrophil-mediated "second hit" and how activated neutrophils may overcome the BBB are currently unknown. Therefore, this review summarizes the current understanding of the "second hit," the BBB physiology, and its role in the maintenance of cerebral immune privilege, and discusses recent findings that may explain the pathophysiologic neutrophil-BBB interactions occurring after severe trauma, thus offering novel therapeutic options to protect from post-traumatic brain damage.  相似文献   

6.

Purpose

P-glycoprotein (Pgp) is an efflux transporter involved in transport of several compounds across the blood?Cbrain barrier (BBB). Loss of Pgp function with increasing age may be involved in the development of age-related disorders, but this may differ between males and females. Pgp function can be quantified in vivo using (R)-[11C]verapamil and positron emission tomography. The purpose of this study was to assess global and regional effects of both age and gender on BBB Pgp function.

Procedures

Thirty-five healthy men and women in three different age groups were included. Sixty minutes dynamic (R)-[11C]verapamil scans with metabolite-corrected arterial plasma input curves were acquired. Grey matter time?Cactivity curves were fitted to a validated constrained two-tissue compartment plasma input model, providing the volume of distribution (V T) of (R)-[11C]verapamil as outcome measure.

Results

Increased V T of (R)-[11C]verapamil with aging was found in several large brain regions in men. Young and elderly women showed comparable V T values. Young women had higher V T compared with young men.

Conclusions

Decreased BBB Pgp is found with aging; however, effects of age on BBB Pgp function differ between men and women.  相似文献   

7.
The return of post-hemorrhagic shock mesenteric lymph (PHSML) induces pulmonary vascular endothelial barrier dysfunction, which results in acute lung injury. Activation of the apoptosis signal-regulated kinase 1 (ASK1) and p38 mitogen-activated protein kinase (p38 MAPK) pathway has been shown to trigger inflammatory responses. However, whether the ASK1-p38 MAPK pathway is involved in the PHSML-induced pulmonary endothelial barrier dysfunction remains unclear. In the present study, permeability changes of pulmonary capillaries were found in vivo, and activation of the ASK1-p38 MAPK pathway was determined in vitro. PMVEC barrier dysfunction was determined by measuring TEER. Furthermore, junctional and cytoskeletal protein expressions were analyzed. The results showed that hemorrhagic shock led to a marked increase in the permeability of pulmonary capillaries in vivo, which was markedly alleviated by PHSML drainage. In cultured pulmonary microvascular endothelial cells (PMVECs), PHSML reduced the endothelial barrier function accompanied by upregulated p-ASK1 and p-p38 MAPK protein expression, impaired the cytoskeletal protein structure, and down-regulated junction protein expression. These adverse effects were eliminated by applying either Trx1 (ASK1 inhibitor) or SB203580 (p38 MAPK inhibitor). These results indicated that the ASK1-p38 MAPK pathway mediates PHSML-induced pulmonary vascular endothelial barrier dysfunction during hemorrhagic shock.

The return of post-hemorrhagic shock mesenteric lymph (PHSML) induces pulmonary vascular endothelial barrier dysfunction, which results in acute lung injury.  相似文献   

8.

Introduction

Angiopoietin-1 (Angpt1), the natural agonist ligand for the endothelial Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor that reduces endothelial permeability and inhibits leukocyte-endothelium interactions. Here we evaluate the efficacy of a novel polyethylene glycol (PEG)-clustered Tie2 agonist peptide, vasculotide (VT), to protect against vascular leakage and mortality in a murine model of polymicrobial abdominal sepsis.

Methods

Polymicrobial abdominal sepsis in C57BL6 mice was induced by cecal-ligation-and-puncture (CLP). Mice were treated with different dosages of VT or equal volume of phosphate-buffered saline (PBS). Sham-operated animals served as time-matched controls.

Results

Systemic administration of VT induced long-lasting Tie2 activation in vivo. VT protected against sepsis-induced endothelial barrier dysfunction, as evidenced by attenuation of vascular leakage and leukocyte transmigration into the peritoneal cavity. Histological analysis revealed that VT treatment ameliorated leukocyte infiltration in kidneys of septic mice, probably due to reduced endothelial adhesion molecule expression. VT-driven effects were associated with significantly improved organ function and reduced circulating cytokine levels. The endothelial-specific action of VT was supported by additional in vitro studies showing no effect of VT on either cytokine release from isolated peritoneal macrophages, or migratory capacity of isolated neutrophils. Finally, administration of VT pre-CLP (hazard ratio 0.39 [95% confidence interval 0.19-0.81] P < 0.001) and post-CLP reduced mortality in septic mice (HR 0.22 [95% CI 0.06-0.83] P < 0.05).

Conclusions

We provide proof of principle in support of the efficacious use of PEGylated VT, a drug-like Tie2 receptor agonist, to counteract microvascular endothelial barrier dysfunction and reduce mortality in a clinically relevant murine sepsis model. Further studies are needed to pave the road for clinical application of this therapeutic concept.  相似文献   

9.

Introduction

The goal of the current study was to investigate the effect of aging on the development of endothelial dysfunction in a murine model of sepsis, and to compare it with the effect of genetic deficiency of the endothelial isoform of nitric oxide synthase (eNOS).

Methods

Cecal ligation and puncture (CLP) was used to induce sepsis in mice. Survival rates were monitored and plasma indices of organ function were measured. Ex vivo studies included the measurement of vascular function in thoracic aortic rings, assessment of oxidative stress/cellular injury in various organs and the measurement of mitochondrial function in isolated liver mitochondria.

Results

eNOS deficiency and aging both exacerbated the mortality of sepsis. Both eNOS-deficient and aged mice exhibited a higher degree of sepsis-associated multiple organ dysfunction syndrome (MODS), infiltration of tissues with mononuclear cells and oxidative stress. A high degree of sepsis-induced vascular oxidative damage and endothelial dysfunction (evidenced by functional assays and multiple plasma markers of endothelial dysfunction) was detected in aortae isolated from both eNOS−/− and aged mice. There was a significant worsening of sepsis-induced mitochondrial dysfunction, both in eNOS-deficient mice and in aged mice. Comparison of the surviving and non-surviving groups of animals indicated that the severity of endothelial dysfunction may be a predictor of mortality of mice subjected to CLP-induced sepsis.

Conclusions

Based on the studies in eNOS mice, we conclude that the lack of endothelial nitric oxide production, on its own, may be sufficient to markedly exacerbate the severity of septic shock. Aging markedly worsens the degree of endothelial dysfunction in sepsis, yielding a significant worsening of the overall outcome. Thus, endothelial dysfunction may constitute an early predictor and independent contributor to sepsis-associated MODS and mortality in aged mice.  相似文献   

10.
Role of C5a-C5aR interaction in sepsis   总被引:2,自引:0,他引:2  
C5a-C5aR signaling plays an essential role in innate immunity of neutrophils. However, excessive interaction of C5a-C5aR results in harmful effects in these cells. In sepsis, robust generation of C5a occurs; blockade of either C5a or C5aR greatly improves survival in experimental sepsis following cecal ligation and puncture (CLP). The beneficial effects derived from C5a-C5aR interaction are associated with preservation of neutrophil innate immune functions (chemotaxis, phagocytosis, respiratory burst), attenuation of the inflammatory reaction, amelioration of coagulopathy, alteration in adhesion molecule expression, and modulation of apoptosis. Following CLP, C5aR expression is significantly elevated in organs, perhaps setting the stage for C5a-induced organ dysfunction. In contrast, C5aR content on neutrophils drops significantly at early stages of sepsis and progressively increases at later time points. Re-expression of C5aR on neutrophils during sepsis appears to be associated with the functional recovery of neutrophil innate immune functions. Following CLP, there is a positive correlation between C5aR content on blood neutrophils and survival of individual animals; high levels of C5aR on neutrophils are associated with survival, whereas low levels of C5aR on neutrophils predict mortality. These data suggest that in sepsis C5a-C5aR signaling is excessive, resulting in paralysis of neutrophil function. Interception of either C5a or C5aR dramatically improves survival during experimental sepsis.  相似文献   

11.
According to the neurovascular hypothesis, impairment of low-density lipoprotein receptor–related protein-1 (LRP1) in brain capillaries of the blood-brain barrier (BBB) contributes to neurotoxic amyloid-β (Aβ) brain accumulation and drives Alzheimer’s disease (AD) pathology. However, due to conflicting reports on the involvement of LRP1 in Aβ transport and the expression of LRP1 in brain endothelium, the role of LRP1 at the BBB is uncertain. As global Lrp1 deletion in mice is lethal, appropriate models to study the function of LRP1 are lacking. Moreover, the relevance of systemic Aβ clearance to AD pathology remains unclear, as no BBB-specific knockout models have been available. Here, we developed transgenic mouse strains that allow for tamoxifen-inducible deletion of Lrp1 specifically within brain endothelial cells (Slco1c1-CreERT2 Lrp1fl/fl mice) and used these mice to accurately evaluate LRP1-mediated Aβ BBB clearance in vivo. Selective deletion of Lrp1 in the brain endothelium of C57BL/6 mice strongly reduced brain efflux of injected [125I] Aβ1–42. Additionally, in the 5xFAD mouse model of AD, brain endothelial–specific Lrp1 deletion reduced plasma Aβ levels and elevated soluble brain Aβ, leading to aggravated spatial learning and memory deficits, thus emphasizing the importance of systemic Aβ elimination via the BBB. Together, our results suggest that receptor-mediated Aβ BBB clearance may be a potential target for treatment and prevention of Aβ brain accumulation in AD.  相似文献   

12.
13.
Activation of the complement system by injury increases inflammation by producing complement fragments C5a and C3a which are able to recruit and activate immune cells. Complement activation may contribute to pain after inflammation and injury. In this study, we examined whether C5a and C3a elicit nociception when injected into mouse hind paws in vivo, and whether C5a and C3a activate and/or sensitize mechanosensitive nociceptors when applied on peripheral terminals in vitro. We also examined the dorsal root ganglia (DRG) for C5a receptor (C5aR) mRNA and effects of C5a and C3a on intracellular Ca2+ concentration ([Ca2+]i) using Ca2+ imaging. Heat hyperalgesia was elicited by intraplantar injection of C5a, and mechanical hyperalgesia by C5a and C3a. After exposure to either C5a or C3a, C-nociceptors were sensitized to heat as evidenced by an increased proportion of heat responsive fibers, lowered response threshold to heat and increased action potentials during and after heat stimulation. A-nociceptors were activated by complement. However, no change was observed in mechanical responses of A- and C-nociceptors after C5a and C3a application. The presence of C5aR mRNA was detected in DRG. C5a and C3a application elevated [Ca2+]i and facilitated capsaicin-induced [Ca2+]i responses in DRG neurons. The results suggest a potential role for complement fragments C5a and C3a in nociception by activating and sensitizing cutaneous nociceptors.  相似文献   

14.
A diverse array of infectious agents, including prions and certain neurotropic viruses, bind to the laminin receptor (LR), and this determines tropism to the CNS. Bacterial meningitis in childhood is almost exclusively caused by the respiratory tract pathogens Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae, but the mechanism by which they initiate contact with the vascular endothelium of the blood brain barrier (BBB) is unknown. We hypothesized that an interaction with LR might underlie their CNS tropism. Using affinity chromatography, coimmunoprecipitation, retagging, and in vivo imaging approaches, we identified 37/67-kDa LR as a common receptor for all 3 bacteria on the surface of rodent and human brain microvascular endothelial cells. Mutagenesis studies indicated that the corresponding bacterial LR-binding adhesins were pneumococcal CbpA, meningococcal PilQ and PorA, and OmpP2 of H. influenzae. The results of competitive binding experiments suggest that a common adhesin recognition site is present in the carboxyl terminus of LR. Together, these findings suggest that disruption or modulation of the interaction of bacterial adhesins with LR might engender unexpectedly broad protection against bacterial meningitis and may provide a therapeutic target for the prevention and treatment of disease.  相似文献   

15.
Objective Sepsis-associated delirium is a common and poorly understood neurological complication of sepsis. This review provides an update of the diagnostic criteria and treatment strategies and the current knowledge about the mechanisms involved in sepsis associated brain dysfunction. Data sources Articles published between 1981 and 2006 were identified through a Medline search for “encephalopathy” and “sepsis” and by hand searching of articles cited in the identified publications. The immune response to sepsis results in multiorgan failure including brain dysfunction. Discussion The potential mechanisms for sepsis-associated delirium include vascular damage, endothelial activation, breakdown of the blood-brain barrier, metabolic disorders, brain inflammation and apoptosis. On the other hand, there is evidence for distinct neuroprotective factors, such as anti-inflammatory mediators and glial cell activity. Conclusions The diagnosis of sepsis-associated delirium relies mainly on clinical and electrophysiological criteria, and its treatment is entirely based on general management of sepsis.  相似文献   

16.
The lymphocyte adaptor protein LNK (also known as SH2B3) is primarily expressed in hematopoietic and endothelial cells, where it functions as a negative regulator of cytokine signaling and cell proliferation. Single-nucleotide polymorphisms in the gene encoding LNK are associated with autoimmune and cardiovascular disorders; however, it is not known how LNK contributes to hypertension. Here, we determined that loss of LNK exacerbates angiotensin II–induced (Ang II–induced) hypertension and the associated renal and vascular dysfunction. At baseline, kidneys from Lnk–/– mice exhibited greater levels of inflammation, oxidative stress, and glomerular injury compared with WT animals, and these parameters were further exacerbated by Ang II infusion. Aortas from Lnk–/– mice exhibited enhanced inflammation, reduced nitric oxide levels, and impaired endothelial-dependent relaxation. Bone marrow transplantation studies demonstrated that loss of LNK in hematopoietic cells is primarily responsible for the observed renal and vascular inflammation and predisposition to hypertension. Ang II infusion increased IFN-γ–producing CD8+ T cells in the spleen and kidneys of Lnk–/– mice compared with WT mice. Moreover, IFN-γ deficiency resulted in blunted hypertension in response to Ang II infusion. Together, these results suggest that LNK is a potential therapeutic target for hypertension and its associated renal and vascular sequela.  相似文献   

17.
18.
A polarized layer of endothelial cells that comprises the blood–brain barrier (BBB) precludes access of systemically administered medicines to brain tissue. Consequently, there is a need for drug delivery vehicles that mediate transendothelial transport of such medicines. Endothelial cells use a variety of endocytotic pathways for the internalization of exogenous materials, including clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis. The different modes of endocytosis result in the delivery of endocytosed material to distinctive intracellular compartments and therewith correlated differential processing. To obtain insight into the properties of drug delivery vehicles that direct their intracellular processing in brain endothelial cells, we investigated the intracellular processing of fixed-size nanoparticles in an in vitro BBB model as a function of distinct nanoparticle surface modifications. Caveolar endocytosis, adsorptive-mediated endocytosis, and receptor-mediated endocytosis were promoted by the use of uncoated 500-nm particles, attachment of the cationic polymer polyethyleneimine (PEI), and attachment of prion proteins, respectively. We demonstrate that surface modifications of nanoparticles, including charge and protein ligands, affect their mode of internalization by brain endothelial cells and thereby their subcellular fate and transcytotic potential.  相似文献   

19.
20.
Microvascular barrier dysfunction is a serious problem that occurs in many inflammatory conditions, including sepsis, trauma, ischemia–reperfusion injury, cardiovascular disease, and diabetes. Barrier dysfunction permits extravasation of serum components into the surrounding tissue, leading to edema formation and organ failure. The basis for microvascular barrier dysfunction is hyperpermeability at endothelial cell–cell junctions. Endothelial hyperpermeability is increased by actomyosin contractile activity in response to phosphorylation of myosin light chain by myosin light chain kinase (MLCK). MLCK‐dependent endothelial hyperpermeability occurs in response to inflammatory mediators (e.g., activated neutrophils, thrombin, histamine, tumor necrosis factor alpha, etc.), through multiple cell signaling pathways and signaling molecules (e.g., Ca++, protein kinase C, Src kinase, nitric oxide synthase, etc.). Other signaling molecules protect against MLCK‐dependent hyperpermeability (e.g., sphingosine‐1‐phosphate or cAMP). In addition, individual MLCK isoforms play specific roles in endothelial barrier dysfunction, suggesting that isoform‐specific inhibitors could be useful for treating inflammatory disorders and preventing multiple organ failure. Because endothelial barrier dysfunction depends upon signaling through MLCK in many instances, MLCK‐dependent signaling comprises multiple potential therapeutic targets for preventing edema formation and multiple organ failure. The following review is a discussion of MLCK‐dependent mechanisms and cell signaling events that mediate endothelial hyperpermeability. © 2012 Wiley Periodicals, Inc. Med. Res. Rev., 00, No. 00, 1‐23, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号