首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The aim of present study was to prepare nanometer sized particles of gelatin via water-in-oil microemulsion system for drug and gene delivery applications. In this study, cross-linked gelatin nanoparticles encapsulating a fluorescent marker molecule fluorescein isothiocyanate-dextran (FITC-Dex, Mol. Wt. 19.3kDa) have been prepared, characterized and their influence on human fibroblasts has been assessed in terms of cell adhesion, cytotoxicity, light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and observation of cytoskeleton organisation. Gelatin nanoparticles were prepared inside the aqueous cores of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-hexane reverse micelles. Transmission electron microscopy image showed that the particles are spherical in shape with size of 37+/-0.84 nm diameter. The release of FITC-Dex from the nanoparticles in phosphate buffer saline (pH 7.4) is found to increase with time and about 80% of the encapsulated dye is released in 6 h. Cell adhesion studies with human fibroblasts have shown that gelatin nanoparticles do not affect the number of cells adhered to glass as compared to control cells with no particles. Standard cell viability assay demonstrated that cells incubated with gelatin nanoparticles remained more than 100% viable at concentration as high as 500 microg/ml. From SEM image, it was observed that the nanoparticles were internalised and the fibroblasts exhibited vacuoles in the cell body with cell membrane abnormalities. Endocytosis of nanoparticles was confirmed from TEM studies and it resulted in disruption of F-actin and beta-tubulin cytoskeleton. These studies show that the gelatin nanoparticles prepared by water-in-oil microemulsion systems are endocytosed by the fibroblasts without being toxic to cells even at high concentration of nanoparticles.  相似文献   

2.
The cytotoxicity of adriamycin (ADR)-loaded and pH-sensitive nanoparticles made of pullulan acetate (PA) and sulfonamide (sulfadimethoxine; SDM) (PA/SDM) conjugate to a breast tumor cell line (MCF-7) was investigated to test the feasibility of the nanoparticles in targeting acidic tumor extracellular pH (pH(e)). At pH 6.8, ADR loaded PA/SDM nanoparticles showed cytotoxicity in the cell culture experiment, comparable to that of free ADR at the same ADR concentrations, while the relative cytotoxicity at pH 7.4 was low at the tested concentration range. This pronounced cytotoxicity of the nanoparticles at low pH was attributed to the accelerated release of ADR triggered by pH, enhanced interaction with cells, and internalization. At pH 6.8 and 6.4, the PA/SDM nanoparticles aggressively bounded to MCF-7 cells, probably due to interactions of the cells with hydrophobized nanoparticle surfaces caused by SDM deionization. A confocal laser microscopic study revealed intracellular localization of the drug-loaded nanoparticles. Based on these findings, the pH-sensitive nanoparticles deserve further investigation with an in vivo animal model as a targeted carrier of pH(e).  相似文献   

3.
The objective of this study was to develop and evaluate the anticancer activity and the safety of a combinational drug delivery system using polyamidoamine (PAMAM) dendrimer-coated iron oxide nanoparticles for doxorubicin and poly I:C delivery in vitro. Dendrimer-coated magnetic nanoparticles (DcMNPs) are suitable for drug delivery system as nanocarriers with their following properties, such as surface functional groups, symmetry perfection, internal cavities, nano-size and magnetization. These nanoparticles could be targeted to the tumor site under a magnetic field since they have a magnetic core. DcMNPs were found as a convenient vehicle for targeted doxorubicin delivery in cancer therapy. Poly (I:C) binding on doxorubicin loaded DcMNPs (DcMNPs-Dox) was reported for the first time in the literature. It was also demonstrated that loading of doxorubicin into the cavities of DcMNPs increases the binding efficiency of poly (I:C) to the surface functional groups of dendrimer up to 10 times. When we compare the in vitro cytotoxic properties of doxorubicin, poly (I:C) and poly (I:C) bound doxorubicin loaded DcMNPs (PIC-DcMNPs-Dox), it was observed that PIC-DcMNPs-Dox show the highest cytotoxic effect by passing the cell resistance mechanisms on doxorubicin resistant MCF7 (MCF7/Dox) cells. Results demonstrated that applying PIC-DcMNPs-Dox would improve the efficacy by increasing the biocompatibility of system in blood stream and the toxicity inside tumor cells. These results provide invaluable information and new insight for the design and optimization of a novel combinational drug delivery system for targeted cancer therapy.  相似文献   

4.
Neuroglioma is a complex neuroglial tumor involving dysregulation of many biological pathways at multiple levels. Quercetin is a potent cancer therapeutic agent presented in fruit and vegetables, preventing tumor proliferation, and is a well known cancer therapeutic agent and autophagy mediator. Recent studies showed that drug delivery by nanoparticles have enhanced efficacy with reduced side effects. In this regard, gold-quercetin into poly (dl-lactide-co-glycolide) nanoparticles was examined. In the present study, quercetin nanoparticle induced cell autophagy and apoptosis in human neuroglioma cell was investigated. Quercetin nanoparticle administrated to animals displayed suppressed role in tumor growth. The cell viability was deterined through CCK8 assay. Transmission electron microscopy was utilized to observe the formation of autophagosome. The cell apoptosis was assessed by annexin V-PI staining. The protein expression of cell autophagy regulators and tumor suppressors were analyzed via western blot and RT-PCR. Treatment of human neuroglioma cell with quercetin nanoparticle induced cell death in a dose-and time-dependent manner. The flow cytometry results showed that the proportion of the apoptosis cells had gained after quercetin nanoparticle treatment compared to untreatment group. Moreover, the expression of activated PI3K/AKT and Bcl-2 were down-regulated upon quercetin nanoparticle treatment in human neuroglioma cells. The expression level of LC3 and ERK as well as cytoplasm p53, cleaved Caspase-3 and PARP was positively correlated with the concentration of quercetin nanoparticle. In addition, p-mTOR and GAIP were obviously down-regulated by quercetin nanoparticle treatment in a dose-dependent manner. These results indicated that quercetin nanoparticle could induce autophagy and apoptosis in human neuroglioma cells, the underlying molecular mechanisms, at least partly, through activation LC3/ERK/Caspase-3 and suppression AKT/mTOR signaling.  相似文献   

5.
BACKGROUND AND OBJECTIVE: The inability of radiotherapy to eradicate completely certain human tumours may be due to the presence of resistant hypoxic cells. Several studies have confirmed the radiosensitizing effect of paclitaxel, a microtubular inhibitor. The object of this study was to evaluate the physicochemical characteristics of paclitaxel-loaded nanoparticles, and determine the ability of the released paclitaxel to radiosensitize hypoxic human breast carcinoma cells (MCF-7) with respect to radiation dose. METHODS: The poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles containing paclitaxel were prepared by o/w emulsification-solvent evaporation method. The morphology of the paclitaxel-loaded nanoparticles was investigated by scanning electron microscopy. The drug encapsulation efficiency (EE) and in vitro release profile were measured by high-performance liquid chromatography. Cell cycle was evaluated by flow cytometry. Cell viability was measured by the ability of single cells to form colonies in vitro. RESULTS: The prepared nanoparticles were spherical with diameter between 200 and 800 nm. The EE was 85.5%. The drug release pattern was biphasic with a fast release rate followed by a slow one. Co-culture of human breast carcinoma cells (MCF-7) with paclitaxel-loaded nanoparticles demonstrated that released paclitaxel retained its bioactivity to block cells in the G2/M phase of the cell cycle and effectively sensitized hypoxic MCF-7 cells to radiation with radiosensitivity shown to be dependent of radiation dose at levels of dosages studied. The sensitizer enhancement ratio for paclitaxe-loaded nanoparticles at 10% survival is approximately 1.4. CONCLUSION: This work has demonstrated that paclitaxel can be effectively released from a biodegradable PLGA nanoparticle delivery system while maintaining potent combined cytotoxic and radiosensitizing abilities for hypoxic tumour cells.  相似文献   

6.
目的 研制一种包碳酸氢铵溶液的脂质纳米粒,并观察其超声/光声成像效果。方法 采用薄膜水化法加挤出法制备脂质包裹碳酸氢铵溶液的纳米粒,光镜、电镜、激光粒径仪和电位检测仪检测纳米粒一般物理特性,并通过光声成像仪观察其超声/光声成像效果。结果 制备的纳米粒呈圆球形,形态规则,大小分布均匀,无明显聚集,平均粒径为(230.90±54.58)nm,电位为(-22.81±5.75)mV。碳酸氢铵纳米粒有超声/光声信号,双蒸水纳米粒无超声/光声信号。结论 成功制备包碳酸氢铵溶液脂质纳米粒,可用于超声及光声成像,为进一步体外、体内成像实验奠定了基础。  相似文献   

7.
A self-assembled nanoparticle was prepared using a hydrophobically modified glycol chitosan for gene delivery. A primary amine of glycol chitosan was modified with 5beta-cholanic acid to prepare a hydrophobically modified glycol chitosan (HGC). The modified chitosan spontaneously formed DNA nanoparticles by a hydrophobic interaction between HGC and hydrophobized DNA. As the HGC content increased, the encapsulation efficiencies of DNA increased while the size of HGC nanoparticles decreased. Upon increasing HGC contents, HGC nanoparticle became less cytotoxic. The increased HGC contents also facilitated endocytic uptakes of HGC nanoparticles by COS-1 cells, which were confirmed by a confocal microscopy. The HGC nanoparticles showed increasing in vitro transfection efficiencies in the presence serum. In vivo results also showed that the HGC nanoparticles had superior transfection efficiencies to naked DNA and a commercialized transfection agent. The HGC nanoparticles composed of hydrophobized DNA and hydrophobically modified glycol chitosan played a significant role in enhancing transfection efficiencies in vitro as well as in vivo.  相似文献   

8.
Multilayered polyelectrolyte films fabricated from plasmid DNA and a hydrolytically degradable synthetic polycation can be used to direct the localized transfection of cells without the aid of a secondary transfection agent. Multilayered assemblies 100 nm thick consisting of alternating layers of synthetic polymer and plasmid DNA encoding for enhanced green fluorescent protein (EGFP) were deposited on quartz substrates using a layer-by-layer fabrication procedure. The placement of film-coated slides in contact with COS-7 cells growing in serum-containing culture medium resulted in gene expression in cells localized under the film-coated portion of the slides. The average percentage of cells expressing EGFP relative to the total number of cells ranged from 4.6% to 37.9%, with an average of 18.6%+/-8.2%, as determined by fluorescence microscopy. In addition to providing a mechanism for the immobilization of DNA at the cell/surface interface, a preliminary analysis of film topography by atomic force microscopy (AFM) demonstrated that polymer /DNA films undergo significant structural rearrangements upon incubation to present surface bound condensed plasmid DNA nanoparticles. These data suggest that the presence of the cationic polymer in these materials may also contribute to the internalization and expression of plasmid. The materials and design principles reported here present an attractive framework for the local or non-invasive delivery of DNA from the surfaces of implantable materials or biomedical devices.  相似文献   

9.
A major problem in exploring the full potential of antisense ODN is the lack of a safe and efficient delivery system. In this study a new method has been developed that is highly efficient in encapsulating ODN inside folate receptor (FR)-targeted lipid vesicles. ODN formulated in these vesicles were efficiently protected from degradation by nucleases compared to free ODN. Folate efficiently mediated intracellular delivery of ODN to KB tumor cells that overexpress FR. Delivery of EGFR antisense ODN via FR-targeted lipid vesicles resulted in a significant down-regulation of EGFR expression in KB cells and cell growth inhibition, far more efficient than that with free ODN or ODN encapsulated in ligand-free lipid vesicles. Intracellular delivery of EGFR antisense ODN also sensitized KB cells to doxorubicin (DOX) treatment. Thus targeted delivery of ODN via this novel lipid vector may have potential in treating tumors that overexpress FR.  相似文献   

10.
Background: The development of nanoparticles for the delivery of therapeutic agents has introduced new opportunities for the improvement of medical treatment. Recent efforts have focused on developing targeted nanoparticles, which are formulated by (for therapeutic delivery) functionalizing nanoparticle surfaces with targeting molecules, such as antibodies, peptides, small molecules and oligonucleotides. Objectives: To review the state of targeted nanoparticles development. Methods: The authors discuss the nanoparticle platforms for therapeutic delivery, targeting molecules and the biofunctionalized targeted nanoparticles currently in development. Results/conclusions: Biofunctionalized targeted nanoparticles have demonstrated exciting results in preclinical studies. With continued improvements, they may fulfill their potential as therapeutics carriers that can deliver the maximum dose to diseased tissue while minimizing effects on normal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号