首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Assessment of left (LV) ventricular function is one of the most important tasks of cardiovascular magnetic resonance (CMR). Impairment of LV deformation is a strong predictor of cardiovascular outcome in various cardiac diseases like ischemic heart disease or cardiomyopathies. The aim of the study was to provide reference values for myocardial deformation derived from the CMR feature tracking imaging (FTI) algorithm in a reference population of healthy volunteers.

Methods

FTI was applied to standard short axis and 2-, 3- and 4-chamber views of vector-ECG gated CMR cine SSFP sequences of 150 strictly selected healthy volunteers (75 male/female) of three age tertiles (mean age 45.8yrs). Global peak and mean radial, circumferential and longitudinal endo- and myocardial systolic strain values as well as early diastolic strain rates were measured using FTI within a standard protocol on a 1.5T whole body MR scanner.

Results

Global peak systolic values were 36.3 ± 8.7% for radial, −27.2 ± 4.0% for endocardial circumferential, −21.3 ± 3.3% for myocardial circumferential, −23.4 ± 3.4% for endocardial longitudinal and −21.6 ± 3.2% for myocardial longitudinal strain. Global peak values were -2.1 ± 0.5s−1 for radial, 2.1 ± 0.6s−1 for circumferential endocardial, 1.7 ± 0.5s−1 for circumferential myocardial, 1.8 (1.5-2.2)s−1 for longitudinal endocardial, 1.6 (1.4-2.0)s−1 for longitudinal myocardial early diastolic strain rates. Men showed a higher radial strain than women whereas the circumferential and longitudinal strains were lower resulting in less negative values. Circumferential and longitudinal strain rates were significantly higher in female subjects. Radial strain increased significantly with age whereas the diastolic function measured by the radial, circumferential and longitudinal strain rates showed a decrease.The coefficients of variation determined in ten further subjects, who underwent two CMR examinations within 12 days, were −4.8% for circumferential and −4.5% for longitudinal endocardial mean strains.

Conclusions

Myocardial deformation analysis using FTI is a novel technique and robust when applied to standard cine CMR images providing the possibility of a reliable, objective quantification of global LV deformation. Since strain values and strain rates differed partly between genders as well as between age groups, the application of specific reference values as provided by this study is recommendable.  相似文献   

2.

Background

The extent of surgical scarring in Tetralogy of Fallot (TOF) may be a marker of adverse outcomes and provide substrate for ventricular arrhythmia. In this study we evaluate the feasibility of high resolution three dimensional (3D) late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) for volumetric scar quantification in patients with surgically corrected TOF.

Methods

Fifteen consecutive patients underwent 3D LGE imaging with 3 Tesla CMR using a whole-heart, respiratory-navigated technique. A novel, signal-histogram based segmentation technique was tested for the quantification and modeling of surgical scar. Total scar volume was compared to the gold standard manual expert segmentation. The feasibility of segmented scar fusion to matched coronary CMR data for volumetric display was explored.

Results

Image quality sufficient for 3D scar segmentation was acquired in fourteen patients. Mean patient age was 32.2 ± 11.9 years (range 21 to 57 years) with mean right ventricle (RV) ejection fraction (EF) of 53.9 ± 9.2% and mean RV end diastolic volume of 117.0 ± 41.5 mL/m2. The mean total scar volume was 11.1 ± 8.2 mL using semi-automated 3D segmentation with excellent correlation to manual expert segmentation (r = 0.99, bias = 0.89 mL, 95% CI -1.66 to 3.44). The mean segmentation time was significantly reduced using the novel semi-automated segmentation technique (10.1 ± 2.6 versus 45.8 ± 12.6 minutes). Excellent intra-observer and good inter-observer reproducibility was observed.

Conclusion

3D high resolution LGE imaging with semi-automated scar segmentation is clinically feasible among patients with surgically corrected TOF and shows excellent accuracy and reproducibility. This approach may offer a valuable clinical tool for risk prediction and procedural planning among this growing population.  相似文献   

3.

Background

The aim of the study was to characterize RV adaptation to varying loading conditions in patients with chronic thromboembolic hypertension (CTEPH) before and after pulmonary endarterectomy (PEA). Nearly 4% of patients with pulmonary embolism develop CTEPH. PEA offers a cure with excellent outcome. By use of cardiovascular magnetic resonance (CMR) combined with hemodynamic measurements pulmonary arterial elastance (Ea-pulm_i), end-systolic right ventricular elastance (Ees-RV_i) and ventriculo-arterial coupling (Ea-pulm_i/Ees-RV_i) can be studied before and after PEA.

Methods

Sixty-five patients (mean age 41 ± 12 years, 28 female) underwent CMR pre- and post-PEA. Ejection fraction (EF), end-diastolic (EDVi), end-systolic (ESVi), and stroke (SVi) volumes were indexed for body surface area. Ea-pulm_i was calculated as pulmonary artery mean pressure (mPAP)/SVi, and Ees-RV_i as mPAP/ESVi.

Results

mPAP decreased from 47 ± 12 to 25 ± 9 mmHg, p =0.0001. Ea-pulm_i was increased before PEA and normalized afterwards (2.8 ± 2.1 vs. 0.85 ± 0.4 mmHg/ml/m2, p =0.0001). Ees-RV_i was depressed before and after PEA (0.72 ± 0.27 vs. 0.66 ± 0.3 mmHg/ml/m2, p =0.13). EF improved from 25 ± 12% to 46 ± 10%, p =0.0001, because ventriculo-arterial coupling was restored (4.2 ± 3 vs. 1.4 ± 0.6, p =0.0001). EDVi and ESVi mproved significantly (EDVi 92 ± 32 to 72 ± 23 ml, p =0.0001; ESVi 69 ± 31 to 41 ± 18 ml, p =0.0001).

Conclusion

RV function is largely determined by afterload and returns to normal once afterload is normalized. This is paralleled by a significant improvement of CMR indices of right ventricular remodelling.  相似文献   

4.

Background

Recently pericardial adipose tissue (PAT) has been shown to be an independent predictor of atrial fibrillation (AF). Atrial PAT may influence underlying atrial musculature creating a substrate for AF. This study sought to validate the assessment of total and atrial PAT by standard cardiovascular magnetic resonance (CMR) measures and describe and validate a three dimensional atrial PAT model.

Methods

10 merino cross sheep underwent CMR using a 1.5 Tesla system (Siemens, Sonata, Erlangen, Germany). Atrial and ventricular short axis (SA) images were acquired, using ECG -gated steady state free precession sequences. In order to quantify total volume of adipose tissue, a three dimensional model was constructed from consecutive end-diastolic images using semi-automated software. Regions of adipose tissue were marked in each slice followed by linear interpolation of pixel intensities in spaces between consecutive image slices. Total volume of adipose tissue was calculated as a total volume of the three dimensional model and the mass estimated from volume measurements. The sheep were euthanized and pericardial adipose tissue was removed and weighed for comparison to the corresponding CMR measurements.

Results

All CMR adipose tissue estimates significantly correlated with autopsy measurements (ICC > 0.80; p < 0.03). Intra- observer reliability in CMR measures was high, with 95% levels of agreement within 5.5% (ICC = 0.995) for total fat mass and its individual atrial (95% CI ± 8.3%, ICC = 0.993) and ventricular components (95% CI ± 6.6%, ICC = 0.989). Inter- observer 95% limits of agreement were within ± 10.7% (ICC = 0.979), 7.4% (ICC = 0.991) and 7.2% (ICC = 0.991) for atrial, ventricular and total pericardial adipose tissue, respectively.

Conclusion

This study validates the use of a semi-automated three dimensional atrial PAT model utilizing standard (clinical) CMR sequences for accurate and reproducible assessment of atrial PAT. The measurement of local cardiac fat stores via this methodology could provide a sensitive tool to examine the regional effect of fat deposition on atrial substrate which potentially may influence AF ablation strategies in obese patients.  相似文献   

5.

Background

Severe aortic stenosis (AS) patients with late gadolinium enhancement (LGE) on cardiovascular magnetic resonance (CMR) or left ventricular (LV) systolic dysfunction are known to have worse outcome. We aimed to investigate whether LGE on CMR would be useful in early detection of subclinical LV structural and functional derangements in AS patients.

Methods

118 patients with moderate to severe AS were prospectively enrolled. Echocardiography and CMR images were taken and the patients were divided into groups according to the presence/absence of LGE and of LV systolic dysfunction (LV ejection fraction (EF) <50%). The stiffness of LV was calculated based on Doppler and CMR measurements.

Results

Patients were grouped into either group 1, no LGE and normal LVEF, group 2, LGE but normal LVEF and group 3, LGE with depressed LVEF. There was a significant trend towards increasing LV volumes, worsening of LV diastolic function (E/e’, diastolic elastance), systolic function (end-systolic elastance) and LV hypertrophy between the three groups, which coincided with worsening functional capacity (all p-value < 0.001 for trend). Also, significant differences in the above parameters were noted between group 1 and 2 (E/e’, 14.6 ± 4.3 (mean ± standard deviation) in group 1 vs. 18.2 ± 9.4 in group 2; end-systolic elastance, 3.24 ± 2.31 in group 1 vs. 2.38 ± 1.16 in group 2, all p-value < 0.05). The amount of myocardial fibrosis on CMR correlated with parameters of diastolic (diastolic elastance, Spearman’s ρ = 0.256, p-value = 0.005) and systolic function (end-systolic elastance, Spearman’s ρ = -0.359, p-value < 0.001).

Conclusions

These findings demonstrate the usefulness of CMR for early detection of subclinical LV structural and functional deterioration in AS patients.  相似文献   

6.

Background

Evaluation of left ventricular (LV) diastolic function is essential for the management of heart failure. We verified whether LV diastolic function could be evaluated by measuring the fractional area change (FAC) using cine cardiovascular magnetic resonance (CMR).

Methods

We collected clinical data from 59 patients who underwent echocardiography and cine CMR. Normal, impaired relaxation, pseudonormal, and restrictive LV filling were observed in 15, 28, 11, and 5 patients, respectively. We calculated FAC during the first 30% of diastole (diastolic-index%) in the short-axis view, by tracing the contours on only three MR cine images.

Results

The diastolic index was significantly lower (p < 0.0001) in patients with impaired relaxation (32.4 ± 7.5), pseudonormal filling (25.4 ± 5.6), and restrictive filling (9.5 ± 1.5) compared to those with normal diastolic function (67.7 ± 10.8), and the index decreased significantly with worsening of diastolic dysfunction. The diastolic index correlated positively with early diastolic mitral annular velocity measured by tissue Doppler imaging (r = 0.75, p < 0.0001), respectively.

Conclusions

Measurement of FAC can be useful for the evaluation of LV diastolic function using cine CMR.  相似文献   

7.

Background

Carotid intraplaque hemorrhage (IPH) and lipid rich necrotic core (LRNC) have been associated with accelerated plaque growth, luminal narrowing, future surface disruption and development of symptomatic events. The aim of this study was to evaluate the quantitative relationships between high intensity signals (HIS) in the plaque on TOF-MRA and IPH or LRNC volumes as measured by multicontrast weighted CMR.

Methods

Seventy six patients with a suspected carotid artery stenosis or carotid plaque by ultrasonography underwent multicontrast carotid CMR. HIS presence and volume were measured from TOF-MRA MIP images while IPH and LRNC volumes were separately measured from multicontrast CMR.

Results

For detecting IPH, HIS on MIP images overall had high specificity (100.0%, 95% CI: 93.0 – 100.0%) but relatively low sensitivity (32%, 95% CI: 20.8 – 47.9%). However, the sensitivity had a significant increasing relationship with underlying IPH volume (p = 0.033) and degree of stenosis (p = 0.022). Mean IPH volume was 2.7 times larger in those with presence of HIS than in those without (142.8 ± 97.7 mm3 vs. 53.4 ± 56.3 mm3, p = 0.014). Similarly, mean LRNC volume was 3.4 times larger in those with HIS present (379.8 ± 203.4 mm3 vs. 111.3 ± 122.7 mm3, p = 0.001). There was a strong correlation between the volume of the HIS region and the IPH volume measured from multicontrast CMR (r = 0.96, p < 0.001).

Conclusion

MIP images are easily reformatted from three minute, routine, clinical TOF sequences. High intensity signals in carotid plaque on TOF-MRA MIP images are associated with increased intraplaque hemorrhage and lipid-rich necrotic core volumes. The technique is most sensitive in patients with moderate to severe stenosis.  相似文献   

8.

Background

Although cardiovascular magnetic resonance (CMR) is showing increasingly diagnostic potential in left ventricular non-compaction (LVNC), relatively little research relevant to CMR is conducted in children with LVNC. This study was performed to characterize and compare CMR features and clinical outcomes in children with LVNC with and without late gadolinium enhancement (LGE).

Methods

A cohort of 40 consecutive children (age, 13.7 ± 3.3 years; 29 boys and 11 girls) with isolated LVNC underwent a baseline CMR scan with subsequent clinical follow-up. Short-axis cine images were used to calculate left ventricular (LV) ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), myocardial mass, ratio of non-compacted-to-compacted myocardial thickness (NC/C ratio), and number of non-compacted segments. The LGE images were analyzed to assess visually presence and patterns of LGE. The primary end point was a composite of cardiac death and heart transplantation.

Results

The LGE was present in 10 (25 %) children, and 46 (27 %) segments were involved, including 23 non-compacted segments and 23 normal segments. Compared with LGE- cohort, LGE+ cohort had significantly lower LVEF (23.8 ± 10.7 % vs. 42.9 ± 16.7 %, p < 0.001) and greater LVEDV (169.2 ± 65.1 vs. 118.2 ± 48.9 mL/m2, p = 0.010), LVESV (131.3 ± 55.5 vs. 73.3 ± 46.7 mL/m2, p = 0.002), and sphericity indices (0.75 ± 0.19 vs. 0.60 ± 0.20, p = 0.045). There were no differences in terms of number and distribution of non-compacted segments, NC/C ratio, and myocardial mass index between LGE+ and LGE- cohort. In the LGE+ cohort, adverse events occurred in 6 patients compared to 2 events in the LGE- cohort. Kaplan-Meier analysis showed a significant difference in outcome between LGE+ and LGE- cohort for cardiac death and heart transplantation (p = 0.011).

Conclusions

The LGE was present in up to one-fourth of children with LVNC, and the LGE+ children exhibited a more maladaptive LV remodeling and a higher incidence of cardiovascular death and heart transplantation.  相似文献   

9.

Background

In acute myocardial infarction (AMI), both tissue necrosis and edema are present and both might be implicated in the development of intraventricular dyssynchrony. However, their relative contribution to transient dyssynchrony is not known. Cardiovascular magnetic resonance (CMR) can detect necrosis and edema with high spatial resolution and it can quantify dyssynchrony by tagging techniques.

Methods

Patients with a first AMI underwent percutaneous coronary interventions (PCI) of the infarct-related artery within 24 h of onset of chest pain. Within 5–7 days after the event and at 4 months, CMR was performed. The CMR protocol included the evaluation of intraventricular dyssynchrony by applying a novel 3D-tagging sequence to the left ventricle (LV) yielding the CURE index (circumferential uniformity ratio estimate; 1 = complete synchrony). On T2-weighted images, edema was measured as high-signal (>2 SD above remote tissue) along the LV mid-myocardial circumference on 3 short-axis images (% of circumference corresponding to the area-at-risk). In analogy, on late-gadolinium enhancement (LGE) images, necrosis was quantified manually as percentage of LV mid-myocardial circumference on 3 short-axis images. Necrosis was also quantified on LGE images covering the entire LV (expressed as %LV mass). Finally, salvaged myocardium was calculated as the area-at-risk minus necrosis (expressed as % of LV circumference).

Results

After successful PCI (n = 22, 2 female, mean age: 57 ± 12y), peak troponin T was 20 ± 36ug/l and the LV ejection fraction on CMR was 41 ± 8%. Necrosis mass was 30 ± 10% and CURE was 0.91 ± 0.05. Edema was measured as 58 ± 14% of the LV circumference. In the acute phase, the extent of edema correlated with dyssynchrony (r2 = −0.63, p < 0.01), while extent of necrosis showed borderline correlation (r2 = −0.19, p = 0.05). PCI resulted in salvaged myocardium of 27 ± 14%. LV dyssynchrony (=CURE) decreased at 4 months from 0.91 ± 0.05 to 0.94 ± 0.03 (p < 0.004, paired t-test). At 4 months, edema was absent and scar %LV slightly shrunk to 23.7 ± 10.0% (p < 0.002 vs baseline). Regression of LV dyssynchrony during the 4 months follow-up period was predicted by both, the extent of edema and its necrosis component in the acute phase.

Conclusions

In the acute phase of infarction, LV dyssynchrony is closely related to the extent of edema, while necrosis is a poor predictor of acute LV dyssynchrony. Conversely, regression of intraventricular LV dyssynchrony during infarct healing is predicted by the extent of necrosis in the acute phase.  相似文献   

10.

Background

The late cardiotoxic effects of anthracycline chemotherapy influence morbidity and mortality in the growing population of childhood cancer survivors. Even with lower anthracycline doses, evidence of adverse cardiac remodeling and reduced exercise capacity exist. We aim to examine the relationship between cardiac structure, function and cardiovascular magnetic resonance (CMR) tissue characteristics with chemotherapy dose and exercise capacity in childhood cancer survivors.

Methods

Thirty patients (15 ± 3 years), at least 2 years following anthracycline treatment, underwent CMR, echocardiography, and cardiopulmonary exercise testing (peak VO2). CMR measured ventricular function, mass, T1 and T2 values, and myocardial extracellular volume fraction, ECV, a measure of diffuse fibrosis based on changes in myocardial T1 values pre- and post-gadolinium. Cardiac function was also assessed with conventional and speckle tracking echocardiography.

Results

Patients had normal LVEF (59 ± 7%) but peak VO2 was 17% lower than age-predicted normal values and were correlated with anthracycline dose (r = −0.49). Increased ECV correlated with decreased mass/volume ratio (r = −0.64), decreased LV wall thickness/height ratio (r = −0.72), lower peak VO2(r = −0.52), and higher cumulative dose (r = 0.40). Echocardiographic measures of systolic and diastolic function were reduced compared to normal values (p < 0.01), but had no relation to ECV, peak VO2 or cumulative dose.

Conclusions

Myocardial T1 and ECV were found to be early tissue markers of ventricular remodeling that may represent diffuse fibrosis in children with normal ejection fraction post anthracycline therapy, and are related to cumulative dose, exercise capacity and myocardial wall thinning.  相似文献   

11.

Background

Pulmonary involvement, manifested as pulmonary arterial hypertension or pulmonary fibrosis, is the most common cause of death in systemic sclerosis (SSc). We aimed to explore the feasibility of detecting early pulmonary involvement in SSc using recently developed non-invasive quantitative measures of pulmonary physiology using cardiovascular magnetic resonance (CMR).

Methods

Twenty-seven SSc patients (9 men, 57 ± 13 years) and 10 healthy controls (3 men, 54 ± 9 years) underwent CMR to determine the pulmonary blood volume (PBV) and the PBV variation (PBVV) throughout the cardiac cycle. Patients underwent Doppler echocardiography, high-resolution computed tomography (HRCT), and pulmonary function testing by spirometry. Comparisons were performed using the unpaired t-test and linear regression analysis was performed with Pearson’s correlation coefficient (r).

Results

Compared to healthy controls, the PBV indexed to lung volume (PBVI) was lower in patients (16 ± 4 vs 20 ± 5%, p < 0.05). There was no difference in PBV (466 ± 87 vs 471 ± 122 mL, p = 0.91) or PBVV/stroke volume (45 ± 10 vs 40 ± 6%, p = 0.09). There were no significant correlations between PBVI and pulmonary artery pressure estimated by Doppler (p = 0.08) the lung’s diffusion capacity for carbon monoxide (DLCO) (p = 0.09), vital capacity (p = 0.45), or pulmonary fibrosis by HRCT (p = 0.74).

Conclusions

This study is the first to measure the PBV in humans using CMR. Compared to healthy controls, newly diagnosed SSc patients have a reduced amount of blood in the pulmonary vasculature (PBVI) but unchanged pulmonary vascular distensibility (PBVV/stroke volume). PBVI is unrelated to DLCO, pulmonary artery pressure, vital capacity, and the presence of pulmonary fibrosis. PBVI may be a novel parameter reflecting vascular lung involvement in early-stage SSc, and these findings may be consistent with pathophysiological changes of the pulmonary vasculature.  相似文献   

12.

Background

Fibrofatty degeneration of myocardium in ARVC is associated with wall motion abnormalities. The aim of this study was to examine whether Cardiovascular Magnetic Resonance (CMR) based strain analysis using feature tracking (FT) can serve as a quantifiable measure to confirm global and regional ventricular dysfunction in ARVC patients and support the early detection of ARVC.

Methods

We enrolled 20 patients with ARVC, 30 with borderline ARVC and 22 subjects with a positive family history but no clinical signs of a manifest ARVC. 10 healthy volunteers (HV) served as controls. 15 ARVC patients received genotyping for Plakophilin-2 mutation (PKP-2), of which 7 were found to be positive. Cine MR datasets of all subjects were assessed for myocardial strain using FT (TomTec Diogenes Software). Global strain and strain rate in radial, circumferential and longitudinal mode were assessed for the right and left ventricle. In addition strain analysis at a segmental level was performed for the right ventricular free wall.

Results

RV global longitudinal strain rates in ARVC (−0.68 ± 0.36 sec−1) and borderline ARVC (−0.85 ± 0.36 sec−1) were significantly reduced in comparison with HV (−1.38 ± 0.52 sec−1, p ≤ 0.05). Furthermore, in ARVC patients RV global circumferential strain and strain rates at the basal level were significantly reduced compared with HV (strain: −5.1 ± 2.7 vs. -9.2 ± 3.6%; strain rate: −0.31 ± 0.13 sec−1 vs. -0.61 ± 0.21 sec−1). Even for patients with ARVC or borderline ARVC and normal RV ejection fraction (n=30) global longitudinal strain rate proved to be significantly reduced compared with HV (−0.9 ± 0.3 vs. -1.4 ± 0.5 sec−1; p < 0.005). In ARVC patients with PKP-2 mutation there was a clear trend towards a more pronounced impairment in RV global longitudinal strain rate. On ROC analysis RV global longitudinal strain rate and circumferential strain rate at the basal level proved to be the best discriminators between ARVC patients and HV (AUC: 0.9 and 0.92, respectively).

Conclusion

CMR based strain analysis using FT is an objective and useful measure for quantification of wall motion abnormalities in ARVC. It allows differentiation between manifest or borderline ARVC and HV, even if ejection fraction is still normal.  相似文献   

13.

Background

Cardiovascular Magnetic Resonance (CMR) enables non-invasive quantification of cardiac output (CO) and thereby cardiac index (CI, CO indexed to body surface area). The aim of this study was to establish if CI decreases with age and compare the values to CI for athletes and for patients with congestive heart failure (CHF).

Methods

CI was measured in 144 healthy volunteers (39 ± 16 years, range 21–81 years, 68 females), in 60 athletes (29 ± 6 years, 30 females) and in 157 CHF patients with ejection fraction (EF) below 40% (60 ± 13 years, 33 females). CI was calculated using aortic flow by velocity-encoded CMR and is presented as mean ± SD. Flow was validated in vitro using a flow phantom and in 25 subjects with aorta and pulmonary flow measurements.

Results

There was a slight decrease of CI with age in healthy subjects (8 ml/min/m2 per year, r2 = 0.07, p = 0.001). CI in males (3.2 ± 0.5 l/min/m2) and females (3.1 ± 0.4 l/min/m2) did not differ (p = 0.64). The mean ± SD of CI in healthy subjects in the age range of 20–29 was 3.3 ± 0.4 l/min/m2, in 30–39 years 3.3 ± 0.5 l/min/m2, in 40–49 years 3.1 ± 0.5 l/min/m2, 50–59 years 3.0 ± 0.4 l/min/m2 and >60 years 3.0 ± 0.4 l/min/m2. There was no difference in CI between athletes and age-controlled healthy subjects but HR was lower and indexed SV higher in athletes. CI in CHF patients (2.3 ± 0.6 l/min/m2) was lower compared to the healthy population (p < 0.001). There was a weak correlation between CI and EF in CHF patients (r2 = 0.07, p < 0.001) but CI did not differ between patients with NYHA-classes I-II compared to III-IV (n = 97, p = 0.16) or patients with or without hospitalization in the previous year (n = 100, p = 0.72). In vitro phantom validation showed low bias (−0.8 ± 19.8 ml/s) and in vivo validation in 25 subjects also showed low bias (0.26 ± 0.61 l/min, QP/QS 1.04 ± 0.09) between pulmonary and aortic flow.

Conclusions

CI decreases in healthy subjects with age but does not differ between males and females. We found no difference in CI between athletes and healthy subjects at rest but CI was lower in patients with congestive heart failure. The presented values can be used as reference values for flow velocity mapping CMR.  相似文献   

14.

Background

Diffuse myocardial fibrosis (DMF) is important in cardiovascular disease, however until recently could only be assessed by invasive biopsy. We hypothesised that DMF measured by T1 mapping is elevated in isolated systemic hypertension.

Methods

In a study of well-controlled hypertensive patients from a specialist tertiary centre, 46 hypertensive patients (median age 56, range 21 to 78, 52 % male) and 50 healthy volunteers (median age 45, range 28 to 69, 52 % male) underwent clinical CMR at 1.5 T with T1 mapping (ShMOLLI) using the equilibrium contrast technique for extracellular volume (ECV) quantification. Patients underwent 24-hours Automated Blood Pressure Monitoring (ABPM), echocardiographic assessment of diastolic function, aortic stiffness assessment and measurement of NT-pro-BNP and collagen biomarkers.

Results

Late gadolinium enhancement (LGE) revealed significant unexpected underlying pathology in 6 out of 46 patients (13 %; myocardial infarction n = 3; hypertrophic cardiomyopathy (HCM) n = 3); these were subsequently excluded. Limited, non-ischaemic LGE patterns were seen in 11 out of the remaining 40 (28 %) patients. Hypertensives on therapy (mean 2.2 agents) had a mean ABPM of 152/88 mmHg, but only 35 % (14/40) had left ventricular hypertrophy (LVH; LV mass male > 90 g/m2; female > 78 g/m2). Native myocardial T1 was similar in hypertensives and controls (955 ± 30 ms versus 965 ± 38 ms, p = 0.16). The difference in ECV did not reach significance (0.26 ± 0.02 versus 0.27 ± 0.03, p = 0.06). In the subset with LVH, the ECV was significantly higher (0.28 ± 0.03 versus 0.26 ± 0.02, p < 0.001).

Conclusion

In well-controlled hypertensive patients, conventional CMR discovered significant underlying diseases (chronic infarction, HCM) not detected by echocardiography previously or even during this study. T1 mapping revealed increased diffuse myocardial fibrosis, but the increases were small and only occurred with LVH.  相似文献   

15.

Background

The effective orifice area (EOA) estimated by transthoracic Doppler echocardiography (TTE) via the continuity equation is commonly used to determine the severity of aortic stenosis (AS). However, there are often discrepancies between TTE-derived EOA and invasive indices of stenosis, thus raising uncertainty about actual definite severity. Cardiovascular magnetic resonance (CMR) has emerged as an alternative method for non-invasive estimation of valve EOA. The objective of this study was to assess the concordance between TTE and CMR for the estimation of valve EOA.

Methods and results

31 patients with mild to severe AS (EOA range: 0.72 to 1.73 cm2) and seven (7) healthy control subjects with normal transvalvular flow rate underwent TTE and velocity-encoded CMR. Valve EOA was calculated by the continuity equation. CMR revealed that the left ventricular outflow tract (LVOT) cross-section is typically oval and not circular. As a consequence, TTE underestimated the LVOT cross-sectional area (ALVOT, 3.84 ± 0.80 cm2) compared to CMR (4.78 ± 1.05 cm2). On the other hand, TTE overestimated the LVOT velocity-time integral (VTILVOT: 21 ± 4 vs. 15 ± 4 cm). Good concordance was observed between TTE and CMR for estimation of aortic jet VTI (61 ± 22 vs. 57 ± 20 cm). Overall, there was a good correlation and concordance between TTE-derived and CMR-derived EOAs (1.53 ± 0.67 vs. 1.59 ± 0.73 cm2, r = 0.92, bias = 0.06 ± 0.29 cm2). The intra- and inter- observer variability of TTE-derived EOA was 5 ± 5% and 9 ± 5%, respectively, compared to 2 ± 1% and 7 ± 5% for CMR-derived EOA.

Conclusion

Underestimation of ALVOT by TTE is compensated by overestimation of VTILVOT, thereby resulting in a good concordance between TTE and CMR for estimation of aortic valve EOA. CMR was associated with less intra- and inter- observer measurement variability compared to TTE. CMR provides a non-invasive and reliable alternative to Doppler-echocardiography for the quantification of AS severity.  相似文献   

16.

Introduction

While non-invasive ventilation aimed at avoiding intubation has become the modality of choice to treat mild to moderate acute respiratory acidosis, many severely acidotic patients (pH <7.20) still need intubation. Extracorporeal veno-venous CO2 removal (ECCO2R) could prove to be an alternative. The present animal study tested in a systematic fashion technical requirements for successful ECCO2R in terms of cannula size, blood and sweep gas flow.

Methods

ECCO2R with a 0.98 m2 surface oxygenator was performed in six acidotic (pH <7.20) pigs using either a 14.5 French (Fr) or a 19Fr catheter, with sweep gas flow rates of 8 and 16 L/minute, respectively. During each experiment the blood flow was incrementally increased to a maximum of 400 mL/minute (14.5Fr catheter) and 1000 mL/minute (19Fr catheter).

Results

Amelioration of severe respiratory acidosis was only feasible when blood flow rates of 750 to 1000 mL/minute (19Fr catheter) were used. Maximal CO2-elimination was 146.1 ± 22.6 mL/minute, while pH increased from 7.13 ± 0.08 to 7.41 ± 0.07 (blood flow of 1000 mL/minute; sweep gas flow 16 L/minute). Accordingly, a sweep gas flow of 8 L/minute resulted in a maximal CO2-elimination rate of 138.0 ± 16.9 mL/minute. The 14.5Fr catheter allowed a maximum CO2 elimination rate of 77.9 mL/minute, which did not result in the normalization of pH.

Conclusions

Veno-venous ECCO2R may serve as a treatment option for severe respiratory acidosis. In this porcine model, ECCO2R was most effective when using blood flow rates ranging between 750 and 1000 mL/minute, while an increase in sweep gas flow from 8 to 16 L/minute had less impact on ECCO2R in this setting.  相似文献   

17.

Background

Without the need of contrast media, diffusion-weighted imaging (DWI) has shown great promise for accurate detection of lipid-rich necrotic core (LRNC), a well-known feature of vulnerable plaques. However, limited resolution and poor image quality in vivo with conventional single-shot diffusion-weighted echo planar imaging (SS-DWEPI) has hindered its clinical application. The aim of this work is to develop a diffusion-prepared turbo-spin-echo (DP-TSE) technique for carotid plaque characterization with 3D high resolution and improved image quality.

Methods

Unlike SS-DWEPI where the diffusion encoding is integrated in the EPI framework, DP-TSE uses a diffusion encoding module separated from the TSE framework, allowing for segmented acquisition without the sensitivity to phase errors. The interleaved, motion-compensated sequence was designed to enable 3D black-blood DWI of carotid arteries with sub-millimeter resolution. The sequence was tested on 12 healthy subjects and compared with SS-DWEPI for image quality, vessel wall visibility, and vessel wall thickness measurements. A pilot study was performed on 6 patients with carotid plaques using this sequence and compared with conventional contrast-enhanced multi-contrast 2D TSE as the reference.

Results

DP-TSE demonstrated advantages over SS-DWEPI for resolution and image quality. In the healthy subjects, vessel wall visibility was significantly higher with diffusion-prepared TSE (p < 0.001). Vessel wall thicknesses measured from diffusion-prepared TSE were on average 35% thinner than those from the EPI images due to less distortion and partial volume effect (p < 0.001). ADC measurements of healthy carotid vessel wall are 1.53 ± 0.23 × 10−3 mm2/s. In patients the mean ADC measurements in the LRNC area were significantly lower (0.60 ± 0.16 × 10−3 mm2/s) than those of the fibrous plaque tissue (1.27 ± 0.29 × 10−3 mm2/s, p < 0.01).

Conclusions

Diffusion-prepared CMR allows, for the first time, 3D DWI of the carotid arterial wall in vivo with high spatial resolution and improved image quality over SS-DWEPI. It can potentially detect LRNC without the use of contrast agents, allowing plaque characterization in patients with renal insufficiency.

Electronic supplementary material

The online version of this article (doi:10.1186/s12968-014-0067-z) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

To characterize and directly quantify regurgitant jets of left atrioventricular valve (LAVV) in patients with corrected atrioventricular septal defect (AVSD) by four-dimensional (4D)Flow Cardiovascular Magnetic Resonance (CMR), streamline visualization and retrospective valve tracking.

Methods

Medical ethical committee approval and informed consent from all patients or their parents were obtained. In 32 corrected AVSD patients (age 26 ± 12 years), echocardiography and whole-heart 4DFlow CMR were performed. Using streamline visualization on 2- and 4-chamber views, the angle between regurgitation and annulus was followed throughout systole. On through-plane velocity-encoded images reformatted perpendicular to the regurgitation jet the cross-sectional jet circularity index was assessed and regurgitant volume and fraction were calculated. Correlation and agreement between different techniques was performed with Pearson’s r and Spearman’s rho correlation and Bland-Altman analysis.

Results

In 8 patients, multiple regurgitant jets over the LAVV were identified. Median variation in regurgitant jet angle within patients was 36°(IQR 18–64°) on the 2-chamber and 30°(IQR 20–40°) on the 4-chamber. Regurgitant jets had a circularity index of 0.61 ± 0.16. Quantification of the regurgitation volume was feasible with 4DFlow CMR with excellent correlation between LAVV effective forward flow and aortic flow (r = 0.97, p < 0.001) for internal validation and moderate correlation with planimetry derived regurgitant volume (r = 0.65, p < 0.001) and echocardiographic grading (rho = 0.51, p = 0.003).

Conclusions

4DFlow CMR with streamline visualization revealed multiple, dynamic and eccentric regurgitant jets with non-circular cross-sectional shape in patients after AVSD correction. 4DFlow with retrospective valve tracking allows direct and accurate quantification of the regurgitation of these complex jets.  相似文献   

19.

Background

In patients with anomalous left coronary artery from the pulmonary artery (ALCAPA) left ventricular (LV) dilatation and dysfunction evolves due to diminished myocardial perfusion caused by coronary steal phenomenon. Using late gadolinium enhanced cardiovascular magnetic resonance (LGE-CMR) imaging, myocardial scarring has been shown in ALCAPA patients late after repair, however the incidence of scarring before surgery and its impact on postoperative course after surgical repair remained unknown.

Methods

8 ALCAPA-patients (mean age 10.0 ± 5.8 months) underwent CMR before and early after (mean 4.9 ± 2.5 months) coronary reimplantation procedures. CMR included functional analysis and LGE for detection of myocardial scars.

Results

LV dilatation (mean LVEDVI 171 ± 94 ml/m2) and dysfunction (mean LV-EF 22 ± 10 %) was present in all patients and improved significantly after surgery (mean LVEDV 68 ± 42 ml/m2, p = 0.02; mean LV-EF 58 ± 19 %, p < 0.001). Preoperative CMR revealed myocardial scarring in 2 of the 8 patients and did not predict postoperative course. At follow-up CMR, one LGE-positive patient showed delayed recovery of LV function while myocardial scarring was still present in both patients. In two patients new-onset transmural scarring was found, although functional recovery after operation was sufficient. One of them showed a stenosis of the left coronary artery and required resurgery.

Conclusions

Despite diminished myocardial perfusion and severely compromised LV function, myocardial scarring was preoperatively only infrequently present. Improvement of myocardial function was independent of new-onset scarring while the impact of preoperative scarring still needs to be defined.  相似文献   

20.

Background

We sought to identify cardiovascular magnetic resonance (CMR) parameters associated with successful univentricular to biventricular conversion in patients with small left hearts.

Methods

Patients with small left heart structures and a univentricular circulation who underwent CMR prior to biventricular conversion were retrospectively identified and divided into 2 anatomic groups: 1) borderline hypoplastic left heart structures (BHLHS), and 2) right-dominant atrioventricular canal (RDAVC). The primary outcome variable was transplant-free survival with a biventricular circulation.

Results

In the BHLHS group (n = 22), 16 patients (73%) survived with a biventricular circulation over a median follow-up of 40 months (4–84). Survival was associated with a larger CMR left ventricular (LV) end-diastolic volume (EDV) (p = 0.001), higher LV-to-right ventricle (RV) stroke volume ratio (p < 0.001), and higher mitral-to-tricuspid inflow ratio (p = 0.04). For predicting biventricular survival, the addition of CMR threshold values to echocardiographic LV EDV improved sensitivity from 75% to 93% while maintaining specificity at 100%. In the RDAVC group (n = 10), 9 patients (90%) survived with a biventricular circulation over a median follow-up of 29 months (3–51). The minimum CMR values were a LV EDV of 22 ml/m2 and a LV-to-RV stroke volume ratio of 0.19.

Conclusions

In BHLHS patients, a larger LV EDV, LV-to-RV stroke volume ratio, and mitral-to-tricuspid inflow ratio were associated with successful biventricular conversion. The addition of CMR parameters to echocardiographic measurements improved the sensitivity for predicting successful conversion. In RDAVC patients, the high success rate precluded discriminant analysis, but a range of CMR parameters permitting biventricular conversion were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号