首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 241 毫秒
1.
目的利用膝关节有限元模型和模拟跳伞着陆实验数据,对半蹲式跳伞着陆过程进行数值模拟,并分析膝关节损伤的机理。方法对16名健康志愿者进行半蹲式模拟跳伞实验,跳落高度分别为0.32m,0.52m和0.72m。基于核磁共振成像建立人体膝关节的三维有限元模型,采用实验测得的膝关节运动学和地面反力数据对跳伞着陆过程进行数值模拟。结果关节内组织的应力水平随着跳落高度的增加而增加,外侧半月板和关节软骨承受了较大的载荷,前交叉韧带和内侧副韧带在屈膝角度达到最大时产生明显的应力集中。结论跳伞着陆的高速冲击是造成关节损伤的直接原因,外侧关节软骨和半月板更易受到损伤,前交叉韧带和内侧副韧带较易在屈膝幅度最大时发生撕裂。  相似文献   

2.
目的研究踝关节外固定防护在模拟半蹲式跳伞着陆中对下肢肌电(Electromyogram,EMG)活动性的影响及其性别差异。方法男女各8名健康成人受试者从0.72m高平台跳落,模拟半蹲式跳伞着陆。实验状态分赤足对照、佩戴护踝和绷带3组。测量其胫骨前肌、外侧腓肠肌、股直肌和股二头肌的肌电图。使用二因素方差分析评价防护和性别对EMG参数的影响。结果使用护踝显著增加男性胫骨前肌触地前EMG幅值(赤足对照:266μV;绷带:368μV;护踝:552μV),防护对其他EMG参数无显著性影响。结论使用护踝仅对男性跳伞者有显著的防护作用;踝关节防护对膝关节EMG活动性无显著性影响。  相似文献   

3.
背景:目前对于假肢的评价还停留在主观感受,缺乏一套客观的评价系统,建立模拟人体运动的在线假肢参数检测系统对于假肢性能的评价、假肢研究设计具有重要意义。 目的:实现假肢的多种步态运动,并通过运动学、动力学数据的比对,评价其仿真程度。 方法:根据仿生学原理,将下肢假肢简化成四杆四轴的力学模型,利用采集得到的多种步态模式,驱动下肢假肢运动,并搭建动态力学测试平台,实时测量假肢运动的地面垂直反力和前后剪力。 结果与结论:假肢步态运动,髋膝关节的变化曲线与正常步态数据相一致,而其地面垂直反力与前后剪力也与正常人体相接近。提示假肢步态实验平台模拟了下肢假肢步态运动,并实时采集假肢运动的多项运动学、动力学参数,具备较高的仿真程度。  相似文献   

4.
用两种姿势着陆时人体质心承受的冲击力   总被引:1,自引:0,他引:1  
本文用高速摄影和仪器分析方法,研究了男性伞兵用平台训练模拟跳伞着陆时,用半蹲式和侧滚式两种姿势人体质心承受的冲击力。实验结果表明:<1>当平台高度为1.0和1.5米,用半蹲式着陆人体质心承受的冲击力大于用侧滚式姿势着陆;<2>人体质心承受的垂直冲击分力。也是半蹲式大于侧滚式;<3>当平台高度为1.5米时,半蹲式着陆使人体质心承受的水平冲击分力大于侧滚式;但平台高度为1.0米时,两种姿势产生的值均有消涨,相互交叉,有待进一步研究。因此,从减小人体质心承受的冲击力看,选用侧滚式着陆优于半蹲式。  相似文献   

5.
目的 利用nmsBuilder和OpenSim两款软件构建个性化全膝关节置换(total knee replacement, TKR)术后骨骼肌肉多体动力学模型,并用弹跳式和内推式两种步态对构建模型进行验证分析。方法 利用患者骨骼数据,通过nmsBuilder建立骨骼实体、骨标点和肌肉标点,从而自动生成对应参考系统和肌肉,将nmsBuilder生成的骨肌模型导入OpenSim先后执行逆向运动学、静态优化和膝关节接触力分析,最后通过弹跳式和内推式两种步态对模型进行模拟分析,并与实验测量值进行对比验证。结果 除了外侧关节接触力,模型预测的胫股关节接触力幅值和趋势与实验获得数据对比有很好的一致性,构建的骨骼肌肉多体动力学模型可以被用于膝关节研究。结论 利用患者骨骼信息建立的骨肌模型通过输入标记点位置和地面反作用力,可以同时预测出内侧、外侧以及总胫股关节接触力。研究思路可为TKR患者设计个性化膝关节假体提供参考。  相似文献   

6.
目的 通过跳伞着陆模拟实验分析负重重心位置对下肢关节运动的影响,进行损伤评估。方法 招募7名受试者进行负重跳伞着陆模拟实验,负重重心位置分别为背部下侧(位置1)、背部上侧(位置2)、腹部(位置3)。结果 负重重心在位置2处的垂直地面反作用力峰值显著小于(P<0.05)负重重心在位置1处;负重重心在位置2处髋关节矢状面关节力矩显著大于负重重心在位置1、3处;负重重心在位置2处髋关节吸收能量显著大于负重重心在位置1处;负重重心在位置2处髋关节矢状面角位移显著大于负重重心在位置1处,显著小于负重重心在位置3处;负重重心在位置2处髋关节矢状面角速度显著小于负重重心在位置3处。结论 不同的负重重心位置能够显著影响髋关节的动力学和运动学参数,负重重心在背部上侧处能够降低下肢损伤风险。研究结果可以为跳伞者背包负重重心位置评估、减少跳伞着陆损伤提供依据。  相似文献   

7.
目的分析冲击载荷作用下羽毛球运动员下肢关节肌肉的动态响应变化。方法基于Any Body Modeling System软件建立人体肌骨模型,采用实测表面肌电信号进行验证,以运动捕捉系统和测力台测量数据进行模型驱动,对羽毛球右前场蹬跨步上网过程中下肢肌肉肌力、关节力和关节力矩进行逆向动力学仿真与分析。结果所建人体下肢肌骨模型经肌电信号验证有效。羽毛球蹬跨步上网过程中,髋、踝关节Z方向内力峰值显著高于X和Y方向内力峰值,而膝关节X方向内力峰值显著高于Y和Z方向内力峰值;缓冲期,髋关节X、Y、Z方向依次表现为内收力矩、伸髋力矩和内旋力矩,膝关节X、Y、Z方向依次表现为外展力矩、屈膝力矩、外旋力矩,踝关节X、Y方向依次表现为内翻力矩、跖屈力矩,且髋、膝、踝关节X方向力矩峰值显著高于Y和Z方向;股外侧肌、股二头肌、胫骨前肌、腓肠肌内侧在对抗地面冲击载荷时的肌力发挥较大,股直肌、半膜肌、比目鱼肌发挥的作用相对较小。结论建立的下肢肌骨模型可为冲击载荷作用下运动员下肢生物力学特性分析提供技术平台。为避免运动损伤,类似羽毛球前场蹬跨步上网冲击动作中尤其要重视触地瞬间地面反作用力载荷对髋、膝、踝关节前后及内外侧方向生物力学性质的影响,同时在对羽毛球运动员进行专项训练时切勿忽视对股外侧肌、股二头肌、胫骨前肌的专项力量发展。  相似文献   

8.
目的采用正常人体单侧增高模拟下肢不等长,分析下肢不等长步态特征,研究下肢不等长对步态的影响,为下肢假肢穿戴者因下肢不等长引起的慢性疾病提供理论依据。方法通过单侧穿鞋增高人为制造下肢不等长,利用三维动态捕捉系统和地面反力采集设备采集受试者在正常步态和下肢不等长步态下的时空参数、地面反力和关节角度,并进行对比分析。结果下肢不等长步态与正常步态在步长、步长时间和单侧支撑期存在显著差异。下肢不等长步态左右腿足跟着地期垂直方向地面反力均大于正常步态,髋、膝、踝角度存在明显变化。结论下肢不等长是造成行走步态异常的重要原因,可能是下肢假肢穿戴者产生腿部关节疾病的原因。  相似文献   

9.
目的从动作控制角度出发,探讨运动控制对提高短跑运动成绩以及预防运动损伤的可能影响。方法研究对象为8名国家级优秀短跑运动员(最好成绩:10.27s~10.80s),利用8台红外高速摄像系统(采样频率300Hz)与测力台系统(1200Hz)同步记录受试者在短跑最大速度阶段的运动学与动力学地面反作用力资料。根据逆动力学理论建立下肢多环节互动动力学模型,对短跑一个步幅的各种力矩进行量化分析。结果短跑支撑阶段地面反作用力矩是下肢各关节处的主要被动力矩,它在着地初期对膝关节产生一个较大的伸膝作用,腿后肌为抵抗此力矩的  相似文献   

10.
下肢运动信息采集与运动仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 建立人体下肢3D模型与生物力学模型,进行运动学和动力学分析,搭建下肢控制平台为主动式下肢假肢和人体下肢助行器的控制研究提供理论依据。方法 利用VICON人体三维运动捕捉系统采集平地行走人体下肢髋、膝、踝运动信息。利用Solidworks建立人体下肢3D模型,进行下肢运动学分析。基于Matlab中Simulink的机械仿真模块(SimMechanics)建立人体下肢模型,进行动力学分析,产生运动信号。基于Quanser半实物仿真平台搭建控制模型,接收SimMechanics产生的运动控制信号,实现对双下肢运动平台的控制。结果 利用运动学分析得到各个关节的速度和加速度信号,利用动力学仿真得到各个关节的力矩信号,对建立的人体双下肢模型进行模拟仿真,通过仿真验证了模型的合理性,利用输出的信号对双下肢运动平台进行控制实现了平地行走功能。结论 建立的平台可以进行人体下肢运动学、动力学和控制方法的研究,为主动式假肢和人体下肢助行器的控制提供借鉴作用。  相似文献   

11.
Context: Although prophylactic ankle bracing has been shown to be effective in reducing the incidence of ankle sprains,how these ankle braces might affect the other joints of the lower extremity is not clearly understood.Objective: To determine the effects of a prophylactic ankle brace on knee joint varus-valgus and internal-external rotation torque during a drop landing onto a slanted surface.Design: A repeated-measures design.Setting: Biomechanics research laboratory. Patients or Other Participants: Twenty-four physically active college students.Intervention(s): Participants were tested in a brace and no brace condition. Main Outcome Measure(s): We measured 3 dependent variables:(1) peak ankle inversion-eversion torque, (2) peak knee varus-valgus torque, and (3) peak knee internal-external rotation torque. A force plate was used to collect ground reaction force data, and 6 motion analysis cameras collected kinematic data during the unilateral drop landing. An adjustable bar was hung from the ceiling, and a slant board was positioned over the center of the force plate, so that the ankle of the participant's dominant leg would invert upon landing. Peak torque was measure din both the brace and no-brace conditions. The average of the peak values in 3 trials for both conditions was used for the statistical analysis.Results: Ankle eversion torque was significantly greater in the brace condition (F1,23 19.75, P < .01). Knee external rotation torque was significantly greater in the brace condition(F1,23 4.33, P <.05). Valgus knee torque was smaller in the brace condition, but the difference was not statistically significant(F1,23 3.45, P .08).Conclusions: This study provides an important first step in understanding the effects of prophylactic ankle bracing on other joints of the lower extremity. We found that prophylactic ankle bracing did have an effect on knee torque when the subject was landing on a slanted surface. Specifically, knee external rotation torque increased when the ankle was braced.  相似文献   

12.
The accuracy of placement of swing limb heel-strike was used to determine strategies of motor control of the stance limb during gait initiation (GI). Subjects initiated gait as fast as possible with the swing limb heel-strike landing on either a small or large target. Stance limb ground reaction forces, electromyogram duration and temporal data for GI were measured. It was hypothesized that accuracy would affect movement speed and the rate of rise, or the slope, of the ground reaction forces that control GI. The slopes of the stance limb forces that coincide with swing limb toe-off remained invariant. However, the slopes of forces and peak forces related to swing limb heel-strike were significantly less for the small target. These initial data suggest that principles of upper extremity motor control may be generalized to the initiation of movement from upright stance.  相似文献   

13.
C.H. Yeow  P.V.S. Lee  J.C.H. Goh 《The Knee》2010,17(2):127-131
Single-leg and double-leg landing techniques are common athletic maneuvers typically performed from various landing heights during intensive sports activities. However, it is still unclear how the knee joint responds in terms of kinematics and energetics to the combined effects of different landing heights and techniques. We hypothesized that the knee displays greater flexion angles and angular velocities, joint power and work in response to the larger peak ground reaction force from 0.6-m height, compared to 0.3-m height. We further hypothesized that the knee exhibits elevated flexion angles and angular velocities, joint power and work during double-leg landing, relative to single-leg landing. Ground reaction force, knee joint kinematics and energetics data were obtained from 10 subjects performing single-leg and double-leg landing from 0.3-m to 0.6-m heights, using motion-capture system and force-plates. Higher peak ground reaction force (p < 0.05) was observed during single-leg landing and/or at greater landing height. We found greater knee flexion angles and angular velocities (p < 0.05) during double-leg landing and/or at greater landing height. Elevated knee joint power and work were noted (p < 0.05) during double-leg landing and/or at greater landing height. The knee joint is able to respond more effectively in terms of kinematics and energetics to a larger landing impact from an elevated height during double-leg landing, compared to single-leg landing. This allows better shock absorption and thus minimizes the risk of sustaining lower extremity injuries.  相似文献   

14.
BackgroundAltered movement biomechanics are a risk factor for ACL injury. While hip abductor weakness has been shown to negatively impact landing biomechanics, the role of this musculature and injury risk is not clear. The aim of this musculoskeletal simulation study was to determine the effect of hip abductor fatigue-induced weakness on ACL loading, force production of lower extremity muscles, and lower extremity biomechanics during single-leg landing.MethodsBiomechanical data from ten healthy adults were collected before and after a fatigue protocol and used to derive subject-specific estimates of muscle forces and ACL loading using a 5-degree of freedom (DOF) model.ResultsThere were no significant differences in knee joint angles and ACL loading between pre and post-fatigue. However, there were significant differences, due to fatigue, in lateral trunk flexion angle, total excursion of trunk, muscle forces, and joint moments.ConclusionAltered landing mechanics, due to hip abductor fatigue-induced weakness, may be associated with increased risk of ACL injury during single-leg landings. Clinical assessment or screening of ACL injury risk will benefit from subject-specific musculoskeletal models during dynamic movements. Future study considering the type of the fatigue protocols, cognitive loads, and various tasks is needed to further identify the effect of hip abductor weakness on lower extremity landing biomechanics.  相似文献   

15.
Investigating landing kinetics and neuromuscular control strategies during rapid deceleration movements is a prerequisite to understanding the non-contact mechanism of ACL injury. The purpose of this study was to quantify the effect of knee flexion angle on ground reaction forces, net knee joint moments, muscle co-contraction and lower extremity muscles during an impact-like, deceleration task. Ground reaction forces and knee joint moments were determined from video and force plate records of 10 healthy male subjects performing rapid deceleration single leg landings from a 10.5 cm height with different degrees of knee flexion at landing. Muscle co-contraction was based on muscle moments calculated from an EMG-to-moment processing model. Ground reaction forces and co-contraction indices decreased while knee extensor moments increased significantly with increased degrees of knee flexion at landing (all p < 0.005). Higher ground reaction forces when landing in an extended knee position suggests they are a contributing factor in non-contact ACL injuries. Increased knee extensor moments and less co-contraction with flexed knee landings suggest that quadriceps overload may not be the primary cause of non-contact ACL injuries. The results bring into question the counterbalancing role of the hamstrings during dynamic movements. The soleus may be a valuable synergist stabilizing the tibia against anterior translation at landing. Movement strategies that lessen the propagation of reaction forces up the kinetic chain may help prevent non-contact ACL injuries. The relative interaction of all involved thigh and lower leg muscles, not just the quadriceps and hamstrings should be considered when interpreting non-contact ACL injury mechanisms.  相似文献   

16.
In vivo achilles tendon loading' during jumping in humans   总被引:7,自引:0,他引:7  
Elastic behaviour of the human tendomuscular system during jumping was investigated by determination of the in vivo Achilles tendon force. A buckle-type transducer was implanted under local anaesthesia around the right Achilles tendon of an adult subject. After calibration, the Achilles tendon force was recorded together with the triceps surae muscle electromyogram activity and high speed filming and ground reaction force during: a maximal vertical jump from a squat position, a maximal vertical jump from an erect standing position with a preliminary counter-movement, and repetitive submaximal hopping on the spot. Jumping heights were 33, 40 and 7 cm in the squat, the counter movement, and the hopping positions, respectively. The peak Achilles tendon force and mechanical work by the calf muscles were 2233 N and 34 J in the squat jump, 1895 N and 27 J in the counter movement jump, and 3786 N and 51 J when hopping. The changes in tendon length were estimated assuming a stiffness constant calculated from the tendon architecture. The percentages of elastic energy stored in the Achilles tendon during jumping were 23 %, t7% and 34% of the total calf muscle work in the squat jump, the counter movement jump, and hopping, respectively.  相似文献   

17.
目的 探讨三连杆模型用于深蹲动作互动动力学分析的合理性,明确三连杆模型与Visual 3D计算关节力矩的差异来源。方法 选取8名受试者,通过Vicon获取深蹲动作运动学数据,采用拉格朗日第二类方程建立三连杆动力学方程,基于Mathematica编程计算获取关节力矩,与Visual 3D下肢链节段模型计算结果进行对比分析,并采用复相关系数(coefficient of multiple correlation, CMC)评价两者的相似程度。结果 8名受试者髋、膝关节CMC均大于0.85,踝关节CMC在0.50~0.85之间,三连杆动力学方程和Visual 3D计算的关节力矩在髋、膝关节处高度相似,在踝关节处仅呈现中度相似性。结论 三连杆模型可用于深蹲动作的关节力矩分析以及进一步的环节互动动力学分析,但应当考虑由地面反作用力引起的互动力矩(外力矩)对踝关节力矩的影响。  相似文献   

18.
目的 比较髋外展肌疲劳对不同性别人群单腿侧跳落地期间的姿势稳定性及其神经肌肉控制的影响。方法 比较20名男性和20名女性在髋外展肌疲劳干预前后进行单腿侧跳落地期间的压力中心(center of pressure, COP)、地面反作用力(ground reaction force, GRF)、下肢运动学、关节力矩、肌肉活动度等。结果 疲劳后,男性和女性COP在冠状面的最大位移和平均速度增加,髋关节外展峰值角度和踝关节外翻峰值角度增加,踝关节内翻峰值力矩增加。触地前200 ms,男性股直肌、股二头肌、胫前肌、腓骨长肌的激活小于女性;触地后200 ms,男性股二头肌激活小于女性。结论 髋外展肌疲劳导致冠状面姿势稳定性下降,髋、踝关节冠状面稳定性下降,可能增加关节损伤风险。不同性别人群的姿势调控策略存在差异,提示下肢关节损伤机制的性别差异值得进一步探究。  相似文献   

19.
C.H. Yeow  P.V.S. Lee  J.C.H. Goh 《The Knee》2011,18(5):323-328
The knee joint, together with the hip and ankle, contributes to overall shock absorption through their respective flexion motions during landing. This study sought to investigate the presence of a lower extremity coordination pattern by determining mathematical relationships that associate knee flexion angles with hip flexion and ankle dorsiflexion angles during landing phase, and to determine relative postures of the hip and ankle, with reference to the knee, and examine how these relative postures change during key events of the landing phase. Eight healthy male subjects were recruited to perform double-leg landing from 0.6-m height. Motion capture system and force-plates were used to obtain kinematics and ground reaction forces (GRF) respectively. Non-linear regression analysis was employed to determine appropriate mathematical relationships of the hip flexion and ankle dorsiflexion angles with knee flexion angles during the landing phase. Relative lower extremity postures were compared between events of initial contact, peak GRF and maximum knee flexion, using ANOVA on ranks. Our results demonstrated a lower extremity coordination pattern, whereby the knee flexion angles had strong exponential (R2 = 0.92–0.99, p < 0.001) and natural logarithmic (R2 = 0.85–0.97, p < 0.001) relationships with hip flexion and ankle dorsiflexion angles respectively during the landing phase. Furthermore, we found that the subjects adopted distinctly different relative lower extremity postures (p < 0.05) during peak GRF as compared to initial contact. These relative postures were further maintained till the end of the landing phase. The occurrence of these relative postures may be a reflexive mechanism for the subjects to efficiently absorb the impact imposed by the peak GRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号