首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study describes the distribution of orexin-A immunoreactive neurons and their terminal networks in the brains of two species of megachiropterans. In general the organization of the orexinergic system in the mammalian brain is conserved across species, but as one of two groups of mammals that fly and have a high metabolic rate, it was of interest to determine whether there were any specific differences in the organization of this system in the megachiropterans. Orexinergic neurons were limited in distribution to the hypothalamus, and formed three distinct clusters, or nuclei, a main cluster with a perifornical location, a zona incerta cluster in the dorsolateral hypothalamus and an optic tract cluster in the ventrolateral hypothalamus. The nuclear parcellation of the orexinergic system in the megachiropterans is similar to that seen in many mammals, but differs from the microchiropterans where the optic tract cluster is absent. The terminal networks of the orexinergic neurons in the megachiropterans was similar to that seen in a range of mammalian species, with significant terminal networks being found in the hypothalamus, cholinergic pedunculopontine and laterodorsal tegemental nuclei, the noradrenergic locus coeruleus complex, all serotonergic nuclei, the paraventricular nuclei of the epithalamus and adjacent to the habenular nuclei. While the megachiropteran orexinergic system is typically mammalian in form, it does differ from that reported for microchiropterans, and thus provides an additional neural character arguing for independent evolution of these two chiropteran suborders.  相似文献   

2.
The present study describes the organization of the orexinergic (hypocretinergic) neurons in the hypothalamus of the giraffe and harbour porpoise--two members of the mammalian Order Cetartiodactyla which is comprised of the even-toed ungulates and the cetaceans as they share a monophyletic ancestry. Diencephalons from two sub-adult male giraffes and two adult male harbour porpoises were coronally sectioned and immunohistochemically stained for orexin-A. The staining revealed that the orexinergic neurons could be readily divided into two distinct neuronal types based on somal volume, area and length, these being the parvocellular and magnocellular orexin-A immunopositive (OxA+) groups. The magnocellular group could be further subdivided, on topological grounds, into three distinct clusters--a main cluster in the perifornical and lateral hypothalamus, a cluster associated with the zona incerta and a cluster associated with the optic tract. The parvocellular neurons were found in the medial hypothalamus, but could not be subdivided, rather they form a topologically amorphous cluster. The parvocellular cluster appears to be unique to the Cetartiodactyla as these neurons have not been described in other mammals to date, while the magnocellular nuclei appear to be homologous to similar nuclei described in other mammals. The overall size of both the parvocellular and magnocellular neurons (based on somal volume, area and length) were larger in the giraffe than the harbour porpoise, but the harbour porpoise had a higher number of both parvocellular and magnocellular orexinergic neurons than the giraffe despite both having a similar brain mass. The higher number of both parvocellular and magnocellular orexinergic neurons in the harbour porpoise may relate to the unusual sleep mechanisms in the cetaceans.  相似文献   

3.
The present study describes the distribution of orexin-A immunoreactive neurons and terminal networks in relation to the previously described catecholaminergic, cholinergic and serotonergic systems within the brain of the rock hyrax, Procavia capensis. Adult female rock hyrax brains were sectioned and immunohistochemically stained with an antibody to orexin-A. The staining revealed that the neurons were mainly located within the hypothalamus as with other mammals. The orexinergic terminal network distribution also resembled the typical mammalian plan. High-density orexinergic terminal networks were located within regions of the diencephalon (e.g. paraventricular nuclei), midbrain (e.g. serotonergic nuclei) and pons (locus coeruleus), while medium density orexinergic terminal networks were evident in the telencephalic (e.g. basal forebrain), diencephalic (e.g. hypothalamus), midbrain (e.g. periaqueductal gray matter), pontine (e.g. serotonergic nuclei) and medullary regions (e.g. serotonergic and catecholaminergic nuclei). Although the distribution of the orexinergic terminal networks was typically mammalian, the rock hyrax did show one atypical feature, the presence of a high-density orexinergic terminal network within the anterodorsal nucleus of the dorsal thalamus (AD). The dense orexinergic innervation of the AD nucleus has only been reported previously in the Nile grass rat, Arvicanthis niloticus and Syrian hamster, Mesocricetus auratus, both diurnal mammals. It is possible that orexinergic innervation of the AD nucleus might be a unique feature associated with diurnal mammals. It was also noted that the dense orexinergic innervation of the AD nucleus coincided with previously identified cholinergic neurons and terminal networks in this particular nucleus of the rock hyrax brain. It is possible that this dense orexinergic innervation of the AD nucleus in the brain of the rock hyrax may act in concert with the cholinergic neurons and/or the cholinergic axonal terminals, which in turn may influence arousal states and motivational processing.  相似文献   

4.
The distribution of orexinergic cell bodies and terminal networks within the brains of two species of African mole rat (Cape-dune mole rat--Bathyergus suillus and highveld mole rat--Cryptomys hottentotus) were identified using immunohistochemistry for orexin-A. The aim of the study was to investigate possible differences in the nuclear complement and terminal distribution of this system by comparing those of the mole rats to published studies of other rodents and mammals. The wild-caught mole rats used in this study live a subterranean lifestyle and are well known for their regressed visual system, which may lead to the prediction of differences in the distribution of the cell bodies and the terminal networks; however, we found that both species of mole rat displayed orexinergic nuclei limited to the hypothalamus in regions similar to those previously reported for other rodent and mammalian species. No immunoreactive neurons could be identified, in either species of mole rat within the anterior hypothalamic paraventricular nucleus, as has been reported for Murid rodents. The terminal networks, while remaining similar between the species, are more strongly expressed in the Cape-dune mole rat than in the highveld mole rat.  相似文献   

5.
Activation of central cholinergic receptors causes a pressor response in rats, and the hypothalamus is important for this response. Projections from hypothalamic orexin neurons to the rostral ventrolateral medulla (RVLM) are involved in sympatho‐excitation of the cardiovascular system. A small population of orexin neurons is regulated by cholinergic inputs through M3 muscarinic acetylcholine receptor (M3R). To elucidate whether the M3R on orexin neurons is involved in cardiosympathetic regulation through the RVLM, we examined the presence of the M3R on retrograde‐labeled RVLM‐projecting orexin neurons. The retrograde tracer was unilaterally injected into the RVLM. Within the hypothalamus, retrograde‐labeled neurons were located predominantly ipsilateral to the injection side. In the anterior hypothalamus (?1.5 to ?2.3 mm to the bregma), retrograde‐labeled neurons were densely distributed in the paraventricular nuclei and scattered in the retrochiasmatic area. At ?2.3 to ?3.5 mm from the bregma, labeled neurons were located in the regions where orexin neurons were situated, that is, the tuberal lateral hypothalamic area, perifornical area, and dorsomedial nuclei. Very few retrograde‐labeled neurons were observed in the hypothalamus at ?3.5 to ?4.5 mm from the bregma. About 19.5% ± 1.6% of RVLM‐projecting neurons in the tuberal hypothalamus were orexinergic. The M3R was present on 18.7% ± 3.0% of RVLM‐projecting orexin neurons. Injection of a muscarinic agonist, oxotremorine, in the perifornical area resulted in a pressor response, which was attenuated by a pretreatment of atropine. We conclude that cholinergic inputs to orexin neurons may be involved in cardiosympathetic regulation through the M3R on the orexin neurons that directly project to the RVLM. Anat Rec, 299:660–668, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Orexin-A-like immunoreactive (OrA-ir) neurons and terminals in the cat hypothalamus were examined using immunohistochemical techniques. OrA-ir neurons were found principally in the lateral hypothalamic area (LHA) at the level of the tuberal cinereum and in the dorsal and posterior hypothalamic areas. In the LHA the majority of the neurons were located dorsal and lateral to the fornix; a small number of OrA-ir neurons were also present in other regions of the hypothalamus. OrA-ir fibers with varicose terminals were detected in almost all hypothalamic regions. The high density of fibers was located in the suprachiasmatic nucleus, the infundibular nucleus (INF), the tuberomamillary nucleus (TM) and the supra- and pre-mamillary nuclei. Ultrastructural analysis revealed that OrA-ir neurons in the LHA receive abundant input from non-immunoreactive terminals. These terminals, which contained many small, clear, round vesicles with a few large, dense core vesicles, made asymmetrical synaptic contacts with OrA-ir dendrites, indicating that the activity of orexin neurons is under excitatory control. On the other hand, the terminals of OrA-ir neurons also made asymmetrical synaptic contact with dendrites in the LHA, the INF and the TM. The dendrites in the LHA were both non-immunoreactive and OrA-ir; conversely, the dendrites in the INF and the TM were non-immunoreactive. In these regions, OrA-ir terminals contained many small, clear, round vesicles with few large, dense core vesicles, suggesting that orexinergic neurons also provide excitatory input to other neurons in these regions.  相似文献   

7.
It is currently thought that the hypothalamus influences motor output through connections with premotor structures which in turn project to motor nuclei. However, hypocretinergic/orexinergic projections to different motor pools have recently been demonstrated. The present study was undertaken to examine whether hypocretinergic/orexinergic neurons are the only source of projections from the hypothalamus to the trigeminal motor nucleus in the guinea-pig. Cholera toxin subunit b was injected into the trigeminal motor nucleus in order to retrogradely label premotor neurons. Two anatomically separated populations of labeled neurons were observed in the hypothalamus: one group was distributed along the dorsal zone of the lateral hypothalamic area, the lateral portion of the dorsomedial hypothalamic nucleus and the perifornical nucleus; the other was located within the periventricular portion of the dorsomedial hypothalamic nucleus. Numerous cholera toxin subunit b+ neurons in both populations displayed glutamate-like immunoreactivity. In addition, premotor neurons containing hypocretin/orexin were distributed throughout the lateral dorsomedial hypothalamic nucleus, perifornical nucleus and lateral hypothalamic area. Other premotor neurons were immunostained for melanin concentrating hormone; these cells, which were located within the lateral hypothalamic area and the perifornical nucleus, were intermingled with glutamatergic and hypocretinergic/orexinergic neurons. Nitrergic premotor neurons were located only in the periventricular zone of the dorsomedial hypothalamic nucleus. None of the hypothalamic premotor neurons were GABAergic, cholinergic or monoaminergic. The existence of diverse neurotransmitter systems projecting from the hypothalamus to the trigeminal motor pool indicates that this diencephalic structure may influence the numerous functions that are subserved by the trigeminal motor system.  相似文献   

8.
The orexinergic system interacts with several functional states of emotions, stress, hunger, wakefulness and behavioral arousal through four pathways originating in the lateral hypothalamus (LH). Hundreds of orexinergic efferents have been described by tracing studies and direct immunohistochemistry of orexin in the forebrain, olfactory regions, hippocampus, amygdala, septum, basal ganglia, thalamus, hypothalamus, brain stem and spinal cord. Most of these tracing studies investigated the whole orexinergic projection to all regions of the intracranial part of the CNS. To identify the orexinergic efferents at the subnuclear level of resolution, we focussed on the orexinergic target in the amygdala, which is substantially involved in the LH output and contributes mostly to the functional outcome of the orexinergic system and the basal ganglia. Immunohistochemical identification of axonal orexin A and orexin B in male adult rats has been performed on serial sections. In the extended amygdala many new orexinergic targets were found in the anterior amygdaloid area (dense), anterior cortical nucleus (moderate), amygdalostriatal transition region (moderate), basolateral regions (moderate), basomedial nucleus (moderate), several bed nucleus of the stria terminals regions (few to dense), central amygdaloid subdivisions (dense), posteromedial cortical nucleus (moderate) and medial amygdaloid subnuclei (dense). Furthermore, the entopeduncular nucleus has been newly identified as another target for orexinergic fibers with a high density. These results suggest that subdivisions and subnuclei of the extended amygdala are specific targets of the orexinergic system.  相似文献   

9.
用抗FOS免疫组化技术,观察胃肠道伤害性刺激诱导大鼠孤束核、视上核、室旁核内c-fos的表达,并结合抗TH免疫双重染色技术,探讨孤束核内儿茶酚胺能神经元与FOS蛋白的关系,结果表明:FOS阳性细胞主要分布于孤束核的连合亚核、内业核以及背侧周边区,说明孤束核是内脏伤害性信息初级传和冲动的直接反应区。在下丘脑内主要2于视上核和室旁核,提示视上核和室旁核在内脏伤害性刺激的传递中起中毒作用。在双标切片中,  相似文献   

10.
11.
Orexins, novel neuropeptides, are exclusively localized in the hypothalamus and implicated in the regulation of a variety of activities, including food intake and energy balance. Nitric oxide (NO), an unconventional neurotransmitter, is widely present in numerous brain regions including the hypothalamus, and has similar physiological roles to those of the orexins. The present study was undertaken to examine the distribution of orexin neurons and the presence of neuronal nitric oxide synthase (nNOS) in the orexin neurons to clarify whether NO interacts with the orexins in the neuronal regulation activities in the Long-Evans rat. We used two double-labeling methods: nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry in combination with orexin immunohistochemistry, and double-labeling fluorescent immunohistochemistry for orexin and nNOS. The majority of the orexin immunoreactive neurons were localized mainly in the areas of the dorsomedial hypothalamic nucleus (DMN), the dorsal part of the perifornical nucleus (PEF) and lateral hypothalamic area. The orexin immunoreactive cell bodies were medium in size, and triangular, round, elliptic, and fusiform in shape. The sizes and shapes of orexin neurons in the different parts were similar. Cell bodies coexpressing the orexin and nNOS or NADPH-d were present in the areas of the DMN and the PEF, and the nerve fibers containing orexin and nNOS were distributed in the DMN and PEF, arcuate nucleus (ARN) and ventromedial hypothalamic nucleus (VMH). These results provide morphological evidence that there exists a population of nNOS- or NADPH-d-/orexin-coexpressing neurons in the orexinergic cell group in the hypothalamus, and taken together with previous findings, suggest that NO may play a role in the mechanisms by which orexin neurons regulate food intake and energy balance.  相似文献   

12.
The orexins (also known as hypocretins) are peptide neurotransmitters made by hypothalamic neurons that are thought to play an important role in regulating wake-sleep states. One terminal area for orexin neurons is the tuberomammillary nucleus, a histaminergic cell group that is wake-active, but the relationship of the orexinergic terminals to the tuberomammillary neurons has not been examined in detail. We studied the ultrastructure of orexin A-immunoreactive axons and terminals in the tuberomammillary nucleus using pre- and post-embedding electron microscopic protocols. We confirmed an abundant projection of orexin-immunoreactive boutons to both dorsal and ventral divisions of the tuberomammillary nucleus. These terminals made asymmetric synaptic contacts with proximal and intermediate dendrites of tuberomammillary neurons. They contained small, clear synaptic vesicles and up to 30-40 dense core vesicles were seen per terminal in a single section. Both pre- and post-embedding immunostaining revealed that orexin immunoreactivity was localized to the dense core vesicles, which were always at a distance from the synaptic specialization. We also found glutamate immunoreactivity in the small synaptic vesicles which were at the active zone of the synapses of many of the same terminals. Orexinergic afferents to the tuberomammillary neurons contain separate populations of orexinergic and glutamatergic vesicles, suggesting that the release of these neurotransmitters may be differentially regulated.  相似文献   

13.
The distribution of dopamine in the brain of the teleost Gasterosteus aculeatus L. was demonstrated with the indirect peroxidase-antiperoxidase immunohistochemical method using highly specific antibodies against a dopamine-glutaraldehyde-thyroglobulin conjugate. Dopamine-immunoreactive (DAir) neuronal somata were observed in all main brain regions. In the forebrain, DAir neurons were located in a continuous cell column extending from the caudal part of the olfactory bulbs to the preoptic area. The neurons lie lateral to the dorsal (and caudally to the subcommissural) portion of the ventral telencephalic area, and ventromedial to the central nuclei of the dorsal area. In the diencephalon, cerebrospinal fluid-contacting neurons were located in the paraventricular organ and in the subependymal layers of the dorsal and caudal zones of the periventricular hypothalamus. Small DAir neurons were observed in the suprachiasmatic nucleus, in the parvocellular preoptic nucleus and in the ventromedial thalamic nucleus, while large perikarya were observed dorsolateral to the dorsal zone of the periventricular hypothalamus ('PVO-accompanying cells'), in the posterior tuberal nucleus and in the most rostral portion of the mammillary bodies. Numerous small DAir neurons were located in the periventricular pretectal nucleus. In the brainstem, DAir neurons were observed in the isthmus region, in the dorsal raphe nucleus and in the lateral parts of the nucleus of the solitary tract. DAir perikarya were also observed in the area postrema. Direct comparison with the distribution of tyrosine hydroxylase- and dopamine-beta-hydroxylase-immunoreactivity (THir and DBHir) gave the following results: THir neurons were found in all areas where DAir neurons were located, except for the paraventricular organ and the dorsal and caudal zones of the periventricular hypothalamus, which were devoid of THir. DBHir (putatively noradrenergic or adrenergic) neurons were observed in the lateral parts of the nucleus of the solitary tract, and in the isthmus region. The DBHir neurons in the isthmus region, which have previously been shown to be noradrenergic, appeared to be identical with the THir and DAir neurons of the same area. DAir axons were found in high numbers in most parts of the brain. Especially dense innervation was found in the ventrolateral and posterior parts of the dorsal telencephalic area, the region surrounding the lateral recesses of the third ventricle, the interpeduncular nucleus, the dorsal and median raphe nuclei (the rostral raphe nuclei), and in the nucleus of the solitary tract.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Modafinil is a drug used to treat hypersomnolence of narcolepsy. We previously reported that modafinil increases hypothalamic histamine release in rats but did not increase locomotor activity in histamine-depleted mice, suggesting that modafinil-induced locomotor activity involves the histaminergic system. Modafinil is also thought to express its effect through the orexinergic neurons, and orexin increases hypothalamic histamine release. These findings led us to investigate whether modafinil activates the histaminergic system via the orexinergic system. In the present study, we performed in vivo microdialysis and c-Fos immunohistochemistry to investigate whether the orexinergic system mediates the activation of the histaminergic system by modafinil using orexin neuron-deficient mice. Two hours after the injection, modafinil (150 mg/kg) caused a significant increase of histamine release compared to the basal release in wild type mice. However, modafinil had no effect on the histamine release in orexin neuron-deficient mice. By immunohistochemical study, we found that there was no neuronal activation in the tuberomammillary nucleus where the cell bodies of the histaminergic neurons exclusively exist in orexin neuron-deficient mice. These findings indicate that modafinil-induced increment of histamine release requires intact orexinergic neurons.  相似文献   

15.
Gulia KK  Mallick HN  Kumar VM 《Neuroscience》2003,116(4):921-923
The medial preoptic area plays an important role in the regulation of male sexual behavior in rats, and this area receives orexinergic inputs. The role of orexinergic inputs in the medial preoptic area in sexual behavior has not been studied, though they have been shown to play a role in some other physiological functions. In this study, the changes in male sexual behavior in rats were studied after local injection of orexin A (Hypocretin-1) at the medial preoptic area. The results of the study showed that orexin A application at the medial preoptic area increased sexual arousal as well as the copulatory performance. Sexual arousal is one of the physiological stimuli, which influences wakefulness. It is possible that the earlier reports showing increased wakefulness, on application of orexin A at the medial preoptic area/basal forebrain, has a contribution from sexual arousal.  相似文献   

16.
The suprachiasmatic nucleus (SCN), which is considered to be the master circadian clock in mammals, establishes biological rhythms of approximately 24 h that several organs exhibit. One aspect relevant to the study of the neurofunctional features of biological rhythmicity is the identification of communication pathways between the SCN and other brain areas. As a result, SCN efferent projections have been investigated in several species, including rodents and a few primates. The fibers originating from the two main intrinsic fiber subpopulations, one producing vasoactive intestinal peptide (VIP) and the other producing arginine vasopressin (AVP), exhibit morphological traits that distinguish them from fibers that originate from other brain areas. This distinction provides a parameter to study SCN efferent projections. In this study, we mapped VIP (VIP-ir) and AVP (AVP-ir) immunoreactive (ir) fibers and endings in the hypothalamus of the primate Sapajus apella via immunohistochemical and morphologic study. Regarding the fiber distribution pattern, AVP-ir and VIP-ir fibers were identified in regions of the tuberal hypothalamic area, retrochiasmatic area, lateral hypothalamic area, and anterior hypothalamic area. VIP-ir and AVP-ir fibers coexisted in several hypothalamic areas; however, AVP-ir fibers were predominant over VIP-ir fibers in the posterior hypothalamus and medial periventricular area. This distribution pattern and the receiving hypothalamic areas of the VIP-ir and AVP-ir fibers, which shared similar morphological features with those found in SCN, were similar to the patterns observed in diurnal and nocturnal animals. This finding supports the conservative nature of this feature among different species. Morphometric analysis of SCN intrinsic neurons indicated homogeneity in the size of VIP-ir neurons in the SCN ventral portion and heterogeneity in the size of two subpopulations of AVP-ir neurons in the SCN dorsal portion. The distribution of fibers and morphometric features of these neuronal populations are described and compared with those of other species in the present study.  相似文献   

17.
Immunohistochemical procedures were used to investigate the distribution of galanin-like immunoreactive neuronal somata, fiber pathways and apparent termination fields in the gymnotiform brain. Immunoreactive somata were observed only in the hypothalamus and were confined to preoptic, lateral and caudal hypothalamic regions. Within these areas, positive cells tended to be most concentrated in juxtaventricular nuclei. Dense immunoreactive fiber systems originating from hypothalamic regions were seen to project in separate or coalescing fiber bundles to the basal telencephalan, thalamus/tuberal diencephalon, midbrain and brainstem. The density of positive axons and boutons was quite variable, but regions which displayed the most massive network of axons included structures within the hypothalamus itself (anterior periventricular preoptic nucleus, caudal and lateral hypothalamus), ventral telencephalon (superior and ventral subdivisions), thalamic/tuberal areas (central posterior nucleus and tuberal neuropil within the ventral territory of the prepacemaker nucleus) and brainstem nuclei (dorsal reticular nucleus and the medial paralemniscal nucleus). Within these areas axons appeared more randomly distributed and varicose than along fiber tracs, and in counterstained sections were occasionally seen in apposition to unstained neuronal cell bodies and dendrites. In addition, a system of fibers was seen in the neurointermediate lobe of the pituitary. It is concluded that galanin-like immunoreactive neurons in the gymnotiform brain have a more restricted distribution than those in mammals, and that the major fiber systems emanating from the hypothalamus resemble the diverse projections of the tuberomammillary nucleus of higher vertebrates. The anatomy of galanin-like immunoreactive systems in the apteronotid brain suggests a role in neuroendocrine regulation and an involvement with anatomical areas controlling aggressive and courtship behaviour.  相似文献   

18.
19.
The microscopic organization of the Göttingen minipig (sus scrofa) hypothalamus was studied using Nissl stain, acetylcholinesterase histochemistry, and immunohistochemical staining for calretinin, tyrosin hydroxylase, oxytocin, vasopressin, and orexin A.Mediolaterally the minipig hypothalamus can be divided into three cytoarchitectonic distinct longitudinal zones. The periventricular longitudinal zone comprises the supraoptic, paraventricular, median preoptic, anteroventral periventricular, suprachiasmatic and arcuate nuclei.The medial longitudinal zone includes the prominent medial preoptic, ventromedial, dorsomedial and medial mammillary nuclei. Together with the anterior hypothalamic area, they can be further divided into distinct subregions. The dorsal and posterior hypothalamic areas and the retromammillary and lateral mammillary nuclei are cyto- and chemoarchitectonically distinct but cannot be further divided into subregions.The cell sparse, fiber rich lateral longitudinal zone comprises the lateral preoptic and lateral hypothalamic area as well as the perifornical, lateral tuberal and tuberomammillary nuclei.The findings presented here indicate that the cyto- and chemoarchitecture of the Göttingen minipig hypothalamus is comparable to that of rat, landrace pig, monkey, and human and that the Göttingen minipig may be well suited for future, non-primate, large mammal, hypothalamic research.  相似文献   

20.
Background: The dorsal lateral geniculate nucleus (dLGN) is the thalamic region responsible for transmitting retina signals to cortex. Brainstem pathways to this nucleus have been described in several species and are believed to control the retinocortical pathway depending on the state of the animal (awake, asleep, drowsy, etc.). The purpose of this study was to determine all of the subcortical sources of afferents to the dLGN in a higher primate, the macaque monkey, whose visual system is similar to that of humans. Methods: Injections of horseradish peroxidase (HRP), with or without conjugation to wheat germ agglutinin, were made into the dLGNs of seven macaque monkeys, followed by perfusion, brain sectioning, and analyses of neurons in the brainstem, thalamus, and hypothalamus that contained the retrogradely transported marker. Results: The reticular nucleus of the thalamus, pedunculopontine nucleus, parabigeminal nucleus, pretectal nucleus of the optic tract, superior colliculus, dorsal raphe nucleus, and tuberomammillary region of the hypothalamus contained many retrogradely labeled neurons ipsilateral to the injections. In the contralateral brainstem, HRP-labeled cells were found only in the pedunculopontine nucleus, nucleus of the optic tract, and dorsal raphe nucleus. The number of labeled neurons on the contralateral side was about one-half of that in corresponding ipsilateral nuclei. The locus coeruleus contained no labeled neurons in four of the macaques that had injections limited to the dLGN. Conclusion: There are seven subcortical regions that send afferents to the dLGNs of macaque monkeys. Except for the locus coeruleus, these are the same as observed for other species, such as the cat and rat, and indicate the possible sources of subcortical control over the dLGNs of humans. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号