首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, proactive stability control while handling loads and negotiating an elevated surface was examined. Ten young healthy males completed two gait-mode conditions—level walking and negotiating a raised surface. Load-handling conditions were: no load, empty box (reduced visual information), and loaded box (reduced visual information combined with increased inertial load). The lower limb trajectory in the sagittal plane was not modified as a function of reduced visual information or increased inertial load. The step width decreased while stepping over the surface and carrying the loaded box. The trunk pitch angle was biased backwards for both the empty box and the loaded box. When carrying the empty box and negotiating the surface, the trunk pitch range of motion (ROM) increased which may have been a strategy to increase visual exteroceptive information. As increased net trunk pitch could destabilize the system, concurrent stabilizing strategies—decreased gait velocity and reduced net trunk roll velocity—were observed. To meet the equilibrium goals when carrying the loaded box, the trunk pitch ROM and net pitch velocity were reduced during both level walking and surface accommodation. Trunk roll ROM was reduced when carrying the load and negotiating the surface. This study extends our knowledge regarding whole body coordination strategies during anticipatory locomotor adaptations.  相似文献   

2.
This study investigated the effects of altering the base of support (BOS) at the turn point on anticipatory locomotor adjustments during voluntary changes in travel direction in healthy young and older adults. Participants were required to walk at their preferred pace along a 3-m straight travel path and continue to walk straight ahead or turn 40° to the left or right for an additional 2-m. The starting foot and occasionally the gait starting point were adjusted so that participants had to execute the turn using a cross-over step with a narrow BOS or a lead-out step with a wide BOS. Spatial and temporal gait variables, magnitudes of angular segmental movement, and timing and sequencing of body segment reorientation were similar despite executing the turn with a narrow or wide BOS. A narrow BOS during turning generated an increased step width in the step prior to the turn for both young and older adults. Age-related changes when turning included reduced step velocity and step length for older compared to young adults. Age-related changes in the timing and sequencing of body segment reorientation prior to the turn point were also observed. A reduction in walking speed and an increase in step width just prior to the turn, combined with a delay in motion of the center of mass suggests that older adults used a more cautious combined foot placement and hip strategy to execute changes in travel direction compared to young adults. The results of this study provide insight into mobility constraints during a common locomotor task in older adults.  相似文献   

3.
目的 探讨老年人上下楼梯的步态特征以及下肢关节运动的力学性能。 方法 通过17名青年人、15名老年人自然速度上下5个台阶的楼梯测试与分析,并结合红外高速运动捕捉系统和三维测力台获取步态参数、下肢关节角度以及地面反作用力,通过逆向动力学方法计算关节力矩和功率,采取独立样本 t 检验分析年龄对上述参数的影响。 结果 与青年人相比,老年人上下楼梯步态周期较长,步速和步频则明显较低(P<0. 05);同时,老年人上下楼梯支撑相和摆动相分别明显延长和缩短(P<0. 05)。 不论是青年人还是老年人,上下楼梯过程中下肢关节角度、力矩和功率的变化趋势较为一致。 但老年人上楼主要是通过踝、膝关节功率的产生来维持,而青年人则是通过近端肢体的能量,特别动用了较多的膝关节功率。 下楼过程中的能量吸收,两者皆是以膝关节为主。 结论 随着年龄的增长,下肢机能下降和肌力不足,老年人害怕在上下楼梯时发生跌倒,试图通过减少摆动时间来弥补身体的不稳定。 研究结果为临床上老年患者群体的康复管理以及预测跌倒的功能性评估提供参考。  相似文献   

4.
Following the laws of planar covariation, intersegmental coordination is defined with respect to the vertical and heading direction. This vertical reference can be estimated using multisensory information, amongst others visual cues play a role. In the past it was already shown that visual deprivation and/or perturbation of visual information largely affect gait kinematics. The goal of this study is to investigate the impact of visual deprivation on intra-limb movement coordination. Children aged between 3 and 11 years and young adults are included in this study to investigate age-related differences in the visual control of locomotion. Intersegmental coordination was tested under two different conditions: full vision (FV) and no vision (NV). Heading direction and walking speed were taken into account. A significant interaction effect was observed between visual condition and age for walking speed. Between age groups, no differences are observed in the FV condition but in the NV condition children walk significantly slower than adults. This shows that the relative importance of visual information is age dependent. Between age groups significant differences were found in heading direction. Coordination was characterized using the planar covariation technique, by constructing thigh versus shank and shank versus foot angle–angle plots and by cross-correlation function analysis. Regardless of the presence or absence of visual information, the planarity index remains high, indicating that the laws of planar covariation hold in the absence of visual afferent information. On the other hand, the shape of the gait loop does show significant differences between FV and NV conditions. Changes in the shape of the gait loop are primarily determined by changes in the coupling between the thigh and shank elevation angles. The coupling between the shank and foot elevation angles is dependent upon walking speed and does not differ between FV and NV conditions. Between age groups significant differences are observed in covariation plane orientation.  相似文献   

5.
Most falls in older adults occur when walking, specifically following a trip. This study investigated the short- and longer term responses of young (n = 24, 27.6 ± 4.5 yr) and older adults (n = 18, 69.1 ± 4.2 yr) to a trip during gait at comfortable speed and the role of interlimb coordination in recovery from tripping. Subjects walked on a self-paced treadmill when forward movement of their dominant leg was unexpectedly arrested for 250 ms. Recovery of center of mass (COM) movements and of double-support duration following perturbation was determined. In addition, the disruption and recovery of interlimb coordination of the arms and legs was evaluated. Although young and older subjects used similar lower limb strategies in response to the trip, older adults had less stable COM movement patterns before perturbation, had longer transient destabilization (>25%) after perturbation, required more gait cycles to recover double-support duration (older, 3.48 ± 0.7 cycles; young, 2.88 ± 0.4 cycles), and had larger phase shifts that persisted after perturbation (older, -83° to -90°; young, -39° to -42°). Older adults also had larger disruptions to interlimb coordination of the arms and legs. The timing of the initial disruption in coordination was correlated with the disturbance in gait stability only in young adults. In older adults, greater initial COM instability was related to greater longer term arm incoordination. These results suggest a relationship between interlimb coordination and gait stability, which may be associated with fall risk in older adults. Reduced coordination and gait stability suggest a need for stability-related functional training even in high-functioning older adults.  相似文献   

6.

Background

Previous studies suggest that the human gait is under control of higher-order cognitive processes, located in the frontal lobes, such that an age-related degradation of cognitive capabilities has a negative impact on gait.

Methods

Using functional Near-Infrared-Spectroscopy (fNIRS) we investigate the frontocortical hemodynamic correlates of dual-task walking in two conditions. 15 young and 10 older individuals walked on a treadmill while completing concurrent tasks that had either visual (checking) or verbal-memory (alphabet recall) demands. We compared subjects' motor performance, as well as their prefrontal activity in single- and dual-task walking.

Results

Our behavioral data partly confirm previous accounts on higher dual-task costs in stepping parameters (i.e., decreased step duration) in old age, particularly with a visual task and negative dual-task cost (i.e., improved performance) during the verbal task in young adults. Functional imaging data revealed little change of prefrontal activation from single- to dual-task walking in young individuals. In the elderly, however, prefrontal activation substantially decreased during dual-task walking with a complex visual task.

Conclusion

We interpret these findings as evidence for a shift of processing resources from the prefrontal cortex to other brain regions when seniors face the challenge of walking and concurrently executing a visually demanding task.  相似文献   

7.
The lower-limb segment elevation angles during human locomotion have been shown to co-vary in a manner such that they approximate a plane when plotted against each other over a gait cycle. This relationship has been described as the Planar Co-Variation Law and has been shown to be consistent across various modes of locomotion on level ground. The goal of this study is to determine whether the Planar Co-Variation Law will hold in situations where the orientation of the walking surface is altered and if aging will have an effect on this intersegmental coordination during these locomotor tasks. Nine healthy young females (mean age = 21.4), and nine older adult females (mean age = 73.3) were asked to complete walking trials on level ground, and walking up ramps with inclines of 3°, 6°, 9° and 12° while the kinematics of their lower limbs were measured. It was found that the Planar Co-Variation Law was held across all ramp incline conditions by both the young adult and older adult groups. It was found that the changes in intersegmental coordination required to walk up the ramp resulted in a unique orientation of the co-variation plane for both groups when walking up a particular incline. The results of this study indicate that the Planar Co-Variation Law will include situations where the walking surface is not level and provides further support to models of motor control that have been proposed where walking patterns for different modes of gait can be predicted based on the orientation of the co-variation plane.  相似文献   

8.
Walking onto a stationary surface previously experienced as moving generates an after-effect commonly known as the “broken escalator” after-effect (AE). This AE represents an inappropriate expression of the locomotor adaptation necessary to step onto the moving platform (or escalator). It is characterised by two main biomechanical components, an increased gait approach velocity (GAV) and a forward trunk overshoot on gait termination. We investigated whether the trunk overshoot and other biomechanical measures are the direct inertial consequence of the increased GAV or whether these are the result of an independent adaptive mechanism. Forty-eight healthy young adults walked onto a movable sled. They performed 5 trials with the sled stationary at their preferred walking velocity (BEFORE trials), 5 with the sled moving (MOVING or adaptation trials), and 5 with the sled stationary again (AFTER trials). For the AFTER trials, subjects were divided into four groups. One group was instructed to walk slowly (“slower”), another with cueing at the BEFORE pace (“metronome”). The third group walked without cueing at the BEFORE pace (“normal”), and the fourth, fast (“faster”). We measured trunk pitch angle, trunk linear horizontal displacement, left shank pitch angular velocity and surface EMG from lower leg and trunk muscles. In the AFTER trials, an AE was observed in these biomechanical measures for all gait speeds, but these were not strongly dependent on GAV. An AE was present even when GAV was not different from that of BEFORE trials. Therefore, we conclude that, although contributary, the trunk overshoot is not the direct consequence of the increased GAV. Instead, it appears to be generated by anticipatory motor activity “just in case” the sled moves, herewith termed a “pre-emptive” postural adjustment.  相似文献   

9.
Unexplained falls in older adults are thought to arise from subtle deficits in multiple components of the postural control system, including peripheral sensory loss and central sensory processing. One commonly proposed central sensory processing deficit is a decline in the adaptive use of changing or conflicting sensory inputs for estimating body dynamics, i.e., multisensory reweighting. We examined the assumption of impaired multisensory reweighting in healthy and fall-prone older adults using quantitative methods that have previously demonstrated reweighting in young adults. Standing subjects were exposed to simultaneous medio-lateral oscillatory visual and fingertip touch inputs at varying relative amplitudes. No group differences in overall levels of vision and touch gain were found. Both healthy and fall-prone older adults demonstrated the same pattern of adaptive gain change as healthy young adults. Like the young adults, both elderly groups displayed clear evidence of intra- and inter-sensory reweighting to both vision and touch motion stimuli. These data suggest that, for small amplitude vision and touch stimuli, the central sensory reweighting adaptation process remains intact in healthy and fall-prone older adults with sufficiently intact peripheral sensation.  相似文献   

10.
Optic flow is a powerful visual cue for the control of locomotion. Considerable research has focused on how healthy young people use and perceive optic flow. However, little is known on how older adults use this type of visual motion to control walking. The purpose of this study is to investigate the ability of young and older adults to adjust their physical walking trajectory in response to a rotation of the optic flow presented in a virtual environment. Ten healthy young adults (mean age 23.49 ± 4.72 yr) and 10 healthy older adults (mean age 76.22 ± 3.11 yr) participated in the study. Subjects were instructed to walk straight in a virtual environment viewed within a head-mounted display unit as they walked overground for 5 m, while the focus of expansion was gradually rotated to the left or the right by 40°. All subjects responded with a similar strategy by rotating their head and body in the direction away from the orientation of the perturbation. The younger subjects achieved almost complete corrections and had very small net heading errors. In contrast, the older adults had delayed and smaller reorientations, particularly in the head, thus showing significantly larger heading errors compared with younger subjects. We conclude that older adults retain the ability to use optic flow to control their walking trajectory, although smaller, delayed head rotations and larger heading errors may indicate an age-dependent effect on sensorimotor coordination.  相似文献   

11.
This paper presents a study to evaluate the concurrent validity of the Microsoft Kinect for Windows v2 for measuring the spatiotemporal parameters of gait. Twenty healthy adults performed several sequences of walks across a GAITRite mat under three different conditions: usual pace, fast pace, and dual task. Each walking sequence was simultaneously captured with two Kinect for Windows v2 and the GAITRite system. An automated algorithm was employed to extract various spatiotemporal features including stance time, step length, step time and gait velocity from the recorded Kinect v2 sequences. Accuracy in terms of reliability, concurrent validity and limits of agreement was examined for each gait feature under different walking conditions. The 95% Bland–Altman limits of agreement were narrow enough for the Kinect v2 to be a valid tool for measuring all reported spatiotemporal parameters of gait in all three conditions. An excellent intraclass correlation coefficient (ICC2, 1) ranging from 0.9 to 0.98 was observed for all gait measures across different walking conditions. The inter trial reliability of all gait parameters were shown to be strong for all walking types (ICC3, 1 > 0.73). The results of this study suggest that the Kinect for Windows v2 has the capacity to measure selected spatiotemporal gait parameters for healthy adults.  相似文献   

12.
This paper presents an analysis of spatio-temporal gait parameters during overground walking based upon a method that needs only lower trunk accelerations. Twenty-six healthy young subjects and 15 healthy elderly subjects participated in an experiment where overground walking was studied at different speeds. Accelerations of the lower trunk were measured by a tri-axial accelerometer connected to a portable data logger carried on the body. An analysis of trunk acceleration data produced temporal gait parameters (duration of subsequent stride cycles and left/right steps) and convincing estimations of spatial parameters (step length and walking speed). Typical differences in spatio-temporal gait parameters between young and elderly subjects could be demonstrated, i.e. a limited range of walking speeds, smaller step lengths, and a somewhat higher variability of temporal parameters in elderly subjects. It is concluded from these results that essential spatio-temporal gait parameters can be determined during overground walking using only one tri-axial accelerometer. The method is easy-to-use and does not interfere with regular walking patterns. Both the accelerometer and the data logger can be miniaturised to one small instrument that can be carried on the trunk during hours of walking. Thus, the method can easily be incorporated in current activity monitors so that 24-h monitoring of postures and activities can be combined with assessment of gait characteristics during these monitoring periods. In addition, the presented method can be a basis for more sophisticated gait analyses during overground walking, e.g. an analysis of kinematic signals or muscle activity within subsequent stride cycles.  相似文献   

13.
Age-related increased hip extensor recruitment during gait is a proposed compensation strategy for reduced ankle power generation and may indicate a distal-to-proximal shift in muscle function with age. Extending beyond joint level analyses, identifying age-related changes at the muscle level could capture more closely the underlying mechanisms responsible for movement. The purpose of this study was to characterize and compare muscle forces and induced accelerations during gait in healthy older adults with those of young adults. Simulations of one gait cycle for ten older (73.9 ± 5.3 years) and six young (21.0 ± 2.1 years) adults walking at their self-selected speed were analyzed. Muscle force and induced acceleration waveforms, along with kinematic, kinetic, and muscle activation waveforms, were compared between age-groups using principal component analysis. Simulations of healthy older adults had greater gluteus maximus force and vertical support contribution, but smaller iliacus force, psoas force, and psoas vertical support contribution. There were no age-group differences in distal muscle force, contribution, or ankle torque magnitudes. Later peak dorsiflexion and peak ankle angular velocity in older adults may have contributed to their greater ankle power absorption during stance. These findings reveal the complex interplay between age-related changes in neuromuscular control, kinematics, and muscle function during gait.  相似文献   

14.
Human walking is highly adaptable, which allows us to walk under different circumstances. With aging, the probability of falling increases, which may partially be due to a decreased ability of older adults to adapt the gait pattern to the needs of the environment. The literature on visuomotor adaptations during reaching suggests, however, that older adults have little problems in adapting their motor behavior. Nevertheless, it may be that adaptation during a more complex task like gait is compromised by aging. In this study, we investigated the ability of young (n = 8) and older (n = 12) adults to adapt their gait pattern to novel constraints with a split-belt paradigm. Findings revealed that older adults adapted less and more slowly to split-belt walking and showed fewer aftereffects than young adults. While young adults showed a fast adjustment of the relative time spent in swing for each leg older adults failed to do so, but instead they were very fast in manipulating swing speed differences between the two legs. We suggest that these changes in adaptability of gait due to aging stem from a mild degradation of cortico-cerebellar pathways (reduced adaptability) and cerebral structures (decreased ability to change gait cycle timing). However, an alternative interpretation may be that the observed reduced adaptation is a compensatory strategy in view of the instability induced by the split-belt paradigm.  相似文献   

15.
The effects of aging on lower trunk (trunk-low-back joint-pelvis) coordination and energy transfer during locomotion has received little attention; consequently, there are scant biomechanical data available for comparison with patient populations whose upper body movements may be impaired by orthopaedic or neurologic disorders. To address this problem, we analyzed gait data from a cross-sectional sample of healthy adults (n = 93) between 20 and 90 yr old (n = 44 elderly, >50 yr old; n = 49 young, <50 yr old). Gait characteristics of elders were mostly typical: gait speed of elders (1.13 +/- 0.20 m/s) was significantly (P = 0.007) lower than gait speed of young subjects (1.20 +/- 0.18 m/s). Although elders had less low-back (trunk relative to pelvis) range of motion (ROM; P = 0.013) during gait than young subjects, no age-related differences were detected in absolute trunk and pelvis ROM or peak pitch angles during gait. Despite similar upper body postures, there was a strong association between age and pelvis-trunk angular velocity phase angle (r = 0.48, P < 0.001) with zero phase occurring at approximately 55 yr of age; young subjects lead with the pelvis while elderly subjects lead with the trunk. Age related changes in gait speed and low-back ROM were unable to explain the above findings. The trunk-leading strategy used by elders resulted in a sense reversal of the low-back joint power curve and increased (P = 0.013) the mechanical energy expenditure required for eccentric control of the lower trunk musculature during stance phase of gait. These data suggest an age-related change in the control of lower trunk movements during gait that preserves upper body posture and walking speed but requires a leading trunk and higher mechanical energy demands of lower trunk musculature-two factors that may reduce the ability to recover from dynamic instabilities. The behavioral and motor control aspects of these findings may be important for understanding locomotor impairment compensations in aging humans and in quantifying falls risk.  相似文献   

16.
To understand the relationship between variability of foot placement in the frontal plane and stability of gait patterns, we explored how constraining mediolateral foot placement during walking affects the structure of kinematic variance in the lower-limb configuration space during the swing phase of gait. Ten young subjects walked under three conditions: (1) unconstrained (normal walking), (2) constrained (walking overground with visual guides for foot placement to achieve the measured unconstrained step width) and, (3) beam (walking on elevated beams spaced to achieve the measured unconstrained step width). The uncontrolled manifold analysis of the joint configuration variance was used to quantify two variance components, one that did not affect the mediolateral trajectory of the foot in the frontal plane (“good variance”) and one that affected this trajectory (“bad variance”). Based on recent studies, we hypothesized that across conditions (1) the index of the synergy stabilizing the mediolateral trajectory of the foot (the normalized difference between the “good variance” and “bad variance”) would systematically increase and (2) the changes in the synergy index would be associated with a disproportionate increase in the “good variance.” Both hypotheses were confirmed. We conclude that an increase in the “good variance” component of the joint configuration variance may be an effective method of ensuring high stability of gait patterns during conditions requiring increased control of foot placement, particularly if a postural threat is present. Ultimately, designing interventions that encourage a larger amount of “good variance” may be a promising method of improving stability of gait patterns in populations such as older adults and neurological patients.  相似文献   

17.
Falls among adults over the age of 65 years have become a growing concern. Two factors related to high incidence of falls in this group of adults are decreased head stability and impaired balance. Older adults’ level of control of head stability or balance is unknown when they must reorient their gaze. In the current study, ten older adults (69 ± 3.27 years) performed a gaze reorienting task while standing or walking on a treadmill. The task was the same as that used on young adults by Cinelli et al. (2007). The results show that older adults use a different strategy than young adults when reorienting gaze. Shoulder and hip rotations occurred synchronously when standing and were more variable when walking on a treadmill. As well, there was a larger difference between the onset of eye movements and body segment movement in the older adults. These differences can be accounted for by decreases in physiological subsystems. The visual presence of a visual target helped the older adults stabilize their heads-in-space by incorporating information from more than one sensory system.  相似文献   

18.
While it is known that certain pathologies may impact on left-right symmetry of gait, little is known about the mechanisms that contribute to gait symmetry or how high in the hierarchy of the control of gait symmetry is regulated in humans. To assess the contribution of cognitive function to gait symmetry, we measured gait asymmetry (GA) in three subject groups, patients with Parkinson's disease (PD, n = 21), idiopathic elderly fallers (n = 15), and healthy elderly controls (n = 11). All subjects walked, under two walking conditions: usual walking and dual tasking (cognitive loading) condition. For each subject, the swing time (SW) was calculated and averaged across strides for the left and right feet (SWL and SWR). GA was defined as: 100 x /ln(SWR/SWL)/. For both the PD patients and the elderly fallers GA values were significantly higher during the usual walking condition, as compared with the control group (P < 0.01). In addition, for both the PD patients and the elderly fallers, GA significantly increased when they walked and performed a dual task, compared with the usual walking condition (P < 0.003). In contrast, dual tasking did not affect the GA of the healthy controls (P = 0.518). GA was associated with gait speed and gait variability, but no correlations were found between GA and the asymmetry of the classic PD motor symptoms. Thus, the results suggest that the ability to generate a steady, rhythmic walk with a bilaterally coordinated gait does not rely heavily on mental attention and cognitive resources in healthy older adults. In contrast, however, when gait becomes impaired and less automatic, GA apparently relies on cognitive input and attention.  相似文献   

19.
On a daily basis, we are challenged by common environmental obstacles (e.g. street posts) that require simple and often rapid modifications to our gait patterns to avoid collisions. Poor vision appears to be responsible for important reductions in postural stability during gait; and therefore, individuals with impaired vision, such as the elderly, may be at a greater risk of falling, especially under conditions where stepping avoidance strategies may be constrained by the environment. The purpose of the current study was to examine the body segment and eye-gaze reorientation strategy, role of base of support, as well as visual areas of interest attended to by healthy young (YA) and older adults (OA) when only given limited time, one stride, to prepare for an obstacle circumvention task. Six YA and six OA were asked to perform ten walking trials which required them to circumvent an obstacle in their travel path. Participants used one of two avoidance strategies, either lead leg crossing-over trail leg (narrow base of support) or lead leg stepping-out (wide base of support). Results indicate that base of support constraints did not affect segment reorientation sequence in either age group. The general segment reorientation sequence in YA was initiated by trunk yaw and head yaw, followed by gaze and finally, by M-L foot deviation. No trunk roll deviations were observed. In OA, the general segment reorientation sequence was the following: trunk yaw and trunk roll, gaze and finally, M-L foot deviation. No head yaw deviations were observed. Our findings suggest that YA utilized a foot placement strategy to perform the transient change in travel direction while OA relied on a hip strategy. In addition, YA spent more time gazing straight ahead at the obstacle and the wall, while OA spent more time looking at the ground. This strategy indicates that OA use a more cautious strategy to safely avoid the obstacle. Findings from the present work contribute further knowledge regarding locomotor adjustments during a common, and complex, everyday task in young and older adults.  相似文献   

20.
OBJECTIVE: The present study was undertaken to assess whether footedness has effects on selected spatial and angular parameters of able-bodied gait by evaluating footprints of young adults. SUBJECTS AND METHODS: A total of 112 males and 93 females were selected from among students and staff members of the University of Malawi using a simple random sampling method. Footedness of subjects was assessed by the Waterloo Footedness Questionnaire Revised. Gait at natural speed was recorded using the footprint method. The following spatial parameters of gait were derived from the inked footprint sequences of subjects: step and stride lengths, gait angle and base of gait. The anthropometric measurements taken were weight, height, leg and foot length, foot breadth, shoulder width, and hip and waist circumferences. RESULTS: The prevalence of right-, left- and mix-footedness in the whole sample of young Malawian adults was 81%, 8.3% and 10.7%, respectively. One-way analysis of variance did not reveal a statistically significant difference between footedness categories in the mean values of anthropometric measurements (p > 0.05 for all variables). Gender differences in step and stride length values were not statistically significant. Correction of these variables for stature did not change the trend. Males had significantly broader steps than females. Normalized values of base of gait had similar gender difference. The group means of step length and normalized step length of the right and left feet were similar, for males and females. There was a significant side difference in the gait angle in both gender groups of volunteers with higher mean values on the left side compared to the right one (t = 2.64, p < 0.05 for males, and t = 2.78, p < 0.05 for females). One-way analysis of variance did not demonstrate significant difference between footedness categories in the mean values of step length, gait angle, bilateral differences in step length and gait angle, stride length, gait base and normalized gait variables of male and female volunteers (p > 0.05 for all variables). CONCLUSIONS: The present study demonstrated that footedness does not affect spatial and angular parameters of walking gait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号