首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 177 毫秒
1.
Activation of Cl and K+ conductances by nucleotide receptor-operated mobilization of intracellular Ca2+ was investigated in CFPAC-1 cells with the perforated-patch technique. Adenosine 5-triphosphate (ATP) and uridine 5-triphosphate (UTP) caused a dose-dependent fast and transient membrane hyperpolarization. UTP was more effective than ATP. In voltageclamped cells, two currents with different ionic permeability and kinetics were activated by the nucleotides. The first one was carried by Cl ions, peaked in the first few seconds after addition of nucleotides, and lasted for 1±0.3 min. Its amplitude was about 2.7 nA at –100 mV with 100 mol/l of either ATP or UTP. The second current was carried by K+ ions and was blocked by Cs+. This current peaked more slowly and had a mean duration of 4.6±0.7 min. Its amplitude was 0.9 nA and 0.5 nA at –20 mV with 100 umol/l UTP and ATP, respectively. Activation of the nucleotide receptor caused a transient increase in intracellular Ca2+ concentration ([Ca2+]i) that was similar in the presence or absence of extracellular Ca2+. The ED50 for UTP was 24 umol/l and that for ATP was 94 mol/l. Depletion of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store by thapsigargin prevented both the nucleotide-induced [Ca2+]i increase and the activation of membrane currents. Addition of 2 mmol/l Ca2+ to thapsigargin-treated cells produced a sustained increase of Cl and K+ currents, which was reversed by Ca2+ removal. The present study demonstrates that CFPAC-1 cells respond to nucleotide receptor activation with a transient increase in [Ca2+]i that stimulates Ca2+-dependent Cl and K+ currents. This phenomenon is probably mediated by inositol 1,4,5-trisphosphate-dependent Ca2+ stores.  相似文献   

2.
Regulation of Na+-K+ pump current (I(p)) and cystic fibrosis transmembrane conductance regulator (CFTR) Cl- current (I(CFTR)) by protein kinases A and C (PKA and PKC) was compared under identical experimental conditions by simultaneous measurement of the two currents in guinea-pig ventricular myocytes whole-cell voltage-clamped at 30-32 degrees C. Membrane current (I) was monitored at a holding potential (V) of -20 mV. I/ V relationships were obtained by hyperpolarizing voltage ramps. Phorbol 12,13-dibutyrate (PDBu, 0.1-1 microM) and chelerythrine (10 microM) were used to stimulate and inhibit, respectively, PKC activity. PKA was stimulated by forskolin (4 microM) and inhibited by H-89 (50 microM). At -20 mV, stimulation of PKC by PDBu increased I(p) to 121-123% of control. Addition of chelerythrine completely reversed this effect. The PDBu-induced augmentation of I(p) was voltage dependent. The ratio I(p)(PDBu)/ I(p)(control) increased from 1.10 at -100 mV to ~1.35 at positive membrane potentials. Stimulation of PKA by forskolin also increased I(p) voltage dependently (128% of control at -20 mV). The effects of PKC and PKA stimulation on I(p) were additive. The maximum I(p) observed in the presence of PDBu and forskolin was 141% of control. Application of either H-89 or chelerythrine reversibly decreased I(p) by 40% and 24%, respectively, suggesting that basal PKA and PKC activities were involved in the regulation of I(p). In the presence of H-89, PDBu was unable to increase I(p). Likewise, pre-application of chelerythrine abolished the forskolin-induced augmentation of I(p). In contrast to I(p), I(CFTR) (measured simultaneously) was absent under basal conditions. Stimulation of PKA by forskolin activated a pronounced I(CFTR). Stimulation of PKC by PDBu, on the other hand, neither activated the Cl(-) current significantly nor increased I(CFTR) pre-activated by forskolin. Inhibition of PKC by chelerythrine, however, attenuated the PKA-mediated activation of I(CFTR). The results reveal a complex interplay between PKA and PKC in regulating cardiac I(p) and I(CFTR) with some similarities but also important differences. I(p) is increased voltage dependently and additively by stimulation of both kinases. The steady-state activity of each of the kinases is involved in the modulation of basal I(p) and obligatory for the augmentation of I(p) induced by stimulation of the other kinase. In contrast, there appears to be no basal I(CFTR). I(CFTR) is activated significantly only after stimulation of PKA. PKC activity, however, appears to facilitate this activation.  相似文献   

3.
Increasing studies have demonstrated that atherosclerosis is a chronic immunoinflammatory disease, and that oxidized low-density lipoprotein (oxLDL)-specific T cells contribute to the autoimmune process in atherosclerosis. Oral administration of oxLDL, which was identified as a candidate autoantigen in atherosclerosis, was shown to induce tolerance and suppress atherogenesis. However, the precise mechanisms of mucosal tolerance induction, in particular nasal tolerance, remain unknown. In this study, we explored the effect of nasal oxLDL on atherosclerosis as well as the cellular and molecular mechanisms leading to atheroprotective responses, and then found that nasal oxLDL drastically ameliorate the initiation (47.6 %, p?p?=?0.001) of atherosclerosis. Most importantly, a significant 35.8 % reduction of the progression of atherosclerosis was observed in the enhanced immunization group (p?+ latency-associated peptide (LAP)+ regulatory T cells (Tregs) and CD4+CD25+Foxp3+ Tregs in spleens and cervical lymph nodes, together with increased transforming growth factor (TGF)-β production and suppressed T-helper cells type 1, 2, and 17 immune responses. Surprisingly, neutralization of TGF-β in vivo partially counteracted the protective effect of nasal oxLDL treatment, indicating that the presence of TGF-β was indispensable to CD4+LAP+ Tregs and CD4+CD25+Foxp3+ Tregs to acquire regulatory properties. Our studies suggest that CD4+LAP+ Tregs and CD4+CD25+Foxp3+ Tregs induced by nasal delivery of oxLDL can inhibit oxLDL-specific T cells response and ameliorate atherosclerosis process.  相似文献   

4.
The differential diagnosis between malignant and tuberculous exudative pleural effusions is an important clinical problem. The aim of current study is to evaluate the frequencies of T-regulatory cells (Treg) on the basis of distinct phenotypes in the differential diagnosis between malignant and tuberculous pleural effusion. In addition, to evaluate Interferon-gamma (IFN- γ) and interleukin-16 (IL-16) levels and their correlation to Treg cells in malignant and tuberculous pleural effusions. Sixty patients with pleural effusion (26 tuberculous and 34 malignant) and 20 healthy controls were included in the study. Pleural fluid and peripheral blood were assessed for frequencies of T regs, IL-16, and IFN-γ. Pleural effusions from both tuberculous and malignant groups represented significantly higher levels (more in TB) for the following cell populations than peripheral blood: total lymphocytes, CD3+lymphocyte, CD4+CD25+lymphocyte and Treg (CD4+ CD25+FoxP3+). Levels of IL-16 and IFN-γ in tuberculous group were significantly higher than that in malignant group. Regulatory T cells, INF-γ and IL-16 are new important tools for differentiation between tuberculous and malignant pleural effusion.  相似文献   

5.
Walker LS 《Immunology》2004,111(2):129-137
Research on CD4+ CD25+ regulatory T cells (Treg) has gathered momentum over the last five years but many aspects of their fundamental biology remain elusive. Treg have been considered to be 'naturally anergic' based on their failure to proliferate in response to T-cell receptor ligation in vitro. Several recent studies challenge this view and demonstrate a robust proliferative capacity for CD25+ cells. The significance of this finding for Treg homeostasis and function is considered below.  相似文献   

6.
7.
Muscle contraction may up-regulate the number of Na(+)-K(+) pumps in the plasma membrane by translocation of subunits. Since there is still controversy about where this translocation takes place from and if it takes place at all, the present study used different techniques to characterize the translocation. Electrical stimulation and biotin labeling of rat muscle revealed a 40% and 18% increase in the amounts of the Na(+)-K(+) pump alpha(2) subunit and caveolin-3 (Cav-3), respectively, in the sarcolemma. Exercise induced a 36% and 19% increase in the relative amounts of the alpha(2) subunit and Cav-3, respectively, in an outer-membrane-enriched fraction and a 41% and 17% increase, respectively, in sarcolemma giant vesicles. The Na(+)-K(+) pump activity measured with the 3-O-MFPase assay was increased by 37% in giant vesicles from exercised rats. Immunoprecipitation with Cav-3 antibody showed that 17%, 11% and 14% of the alpha(1) subunits were associated with Cav-3 in soleus, extensor digitorum longus, and mixed muscles, respectively. For the alpha(2), the corresponding values were 17%, 5% and 16%. In conclusion; muscle contraction induces translocation of the alpha subunits, which is suggested to be caused partly by structural changes in caveolae and partly by translocation from an intracellular pool.  相似文献   

8.
CD4+ and CD8+ memory T cells are identified into central and effector memory subsets, which are characterized by distinct homing patterns and functions. In this investigation, we show that na?ve and central memory CD4+ and CD8+ T cells are sensitive to hydrogen peroxide (H2O2)-induced apoptosis, whereas effector memory CD4+ and CD8+ T cells are relatively resistant to H2O2-induced apoptosis. Apoptosis in na?ve and central memory CD4+ and CD8+ is associated with the release of cytochrome c and activation of caspase-9 and caspase-3, upregulation of Bax and voltage-dependent anion channel (VDAC) expression, and decreased intracellular glutathione (GSH). In vitro GSH and a superoxide dismutase mimetic Mn(III) tetrakis (1-methyl-4-pyridyl) porphyrin inhibited H2O2-induced apoptosis in both na?ve and central memory CD4+ and CD8+ T cells. Furthermore, VDAC inhibitor 4,4'-diisothiocynostilbene-2,2'-disulfonic acid blocked H2O2-induced apoptosis. These data demonstrate that H2O2 induces apoptosis preferentially in human na?ve and central memory CD4+ and CD8+ T cells via the mitochondrial pathway by regulating intracellular GSH and the expression of Bax and VDAC.  相似文献   

9.
Interferon-γ (IFN-γ)-producing CD3(+)CD4(+)CD25(+)Foxp3(+) peripheral blood lymphocytes (PBL) are more frequently detectable in patients with good than in patients with impaired long-term kidney graft function, suggesting an immunoregulatory role of this induced T regulatory (iTreg) subtype. Herein, the in vitro function of separated CD3(+)CD4(+)CD25(+)Foxp3(+)IFN-γ(+) PBL that were induced by phorbol 12-myristate 13-acetate (PMA)/ionomycin or alloantigenic stimulation was investigated using cell coculture techniques and flow cytometry. CD4(+)CD25(+)Foxp3(+) PBL with intracellular IFN-γ production increased to 26% in cell cultures stimulated with PMA/ionomycin for 6 hours. Recombinant IFN-γ augmented and anti-IFN-γ monoclonal antibody blocked induction of CD4(+)CD25(+)Foxp3(+)IFN-γ(+) PBL, suggesting their IFN-γ-dependent induction. In addition, CD4(+)CD25(+)Foxp3(+)IFN-γ(+) PBL produced immunosuppressive interleukin (IL)-10, transforming growth factor-β, and IL-4 intracellularly and expressed both IFN-γ and IFN-γ receptors (CD119) on the cell surface, allowing separation of CD4(+)CD25(+)IFN-γ(+) PBL with 98% purity. Addition of enriched CD4(+)CD25(+)IFN-γ(+) PBL to autologous PMA/ionomycin stimulated PBL decreased blast formation (p < 0.05), indicating suppression of cell proliferation by CD4(+)CD25(+)IFN-γ(+) PBL. CD4(+)CD25(+)IFN-γ(+) PBL separated from primary mixed leukocyte cultures (MLC) and added to autologous or third-party secondary MLC suppressed allogeneic T-cell activation nonspecifically (p < 0.05). We conclude that CD4(+)CD25(+)Foxp3(+)IFN-γ(+) PBL are induced by IFN-γ, making them sensors for IFN-γ and initial immune responses. Circulating CD4(+)CD25(+)Foxp3(+)IFN-γ(+) PBL could suppress allogeneic T-cell responses in patients and may be involved in inhibition of the posttransplant alloresponse.  相似文献   

10.
T cells may interact with a number of bacterial surface antigens, an encounter which has the potential to downmodulate host immune responses. Neisseria meningitidis, a human colonizer and an agent of septicemia and meningitis, expresses Opa proteins which interact with the CEACAM1 receptor expressed on activated T cells. Since CEACAM1 can act as an inhibitory receptor and T cells in subepithelial tissues may encounter whole bacteria, which often express Opa proteins in vivo, this study assessed primarily if Opa proteins expressed on meningococci affect T-cell functions. In addition, Opa-containing outer membrane vesicles (OMV) have been used as vaccine antigens, and therefore Opa+ and Opa OMV were also studied. While Opa+ bacteria adhered to CEACAM-expressing T cells, both the Opa+ and Opa phenotypes induced no to a small transient depression, followed by a prolonged increase in proliferation as well as cytokine production. Such responses were also observed with heat-killed bacteria or OMV. In addition, while anti-CEACAM antibodies alone inhibited proliferation, on coincubation of T cells with bacteria and the antibodies, bacterial effects predominated and were Opa independent. Thus, while Opa proteins of N. meningitidis can bind to T-cell-expressed CEACAM1, this is not sufficient to overcome the T-cell recognition of bacterial factors, which results in a proliferative and cytokine response, an observation consistent with the ability of the host to establish lasting immunity to Opa-expressing meningococci that it frequently encounters. The data also imply that Opa-proficient vaccine preparations may not necessarily inhibit T-cell functions via CEACAM1 binding.Neisseria meningitidis (meningococci) and Neisseria gonorrhoeae (gonococci), which are highly related at the genetic and antigenic levels, are human-specific mucosal bacteria capable of causing localized or systemic infection. N. meningitidis may colonize the human respiratory mucosal tissue of 3 to 30% of healthy individuals asymptomatically but, in some situations, may penetrate into deeper tissues to cause invasive diseases, such as septicemia and meningitis (5). N. gonorrhoeae may also be carried asymptomatically in a few individuals (13), but in most cases it causes localized infections of urogenital mucosa, and in a few untreated gonorrhea patients, disseminated infection may develop (20).Immune responses to mucosal bacteria are initiated at mucosa-associated lymphoid tissue, where CD4+ T-cell priming occurs and results in the generation of effector and memory T cells (12). Bacterial colonization, and the subsequent disease process in susceptible individuals, begins with adhesion to specific receptors on human mucosal epithelial cells. N. meningitidis and N. gonorrhoeae express colony opacity-associated (Opa) proteins in vitro and in vivo that enable them to attach to human cells. It is now well established that the major receptors targeted by the Opa proteins belong to the CEACAM (carcinoembryonic antigen-related cell adhesion molecule) family of receptors (6, 44, 45). CEACAM1 is one of several related molecules expressed on human epithelial cells, endothelial cells, and leukocytes, but CEACAM1 is the only member of the family expressed on T cells (19, 28). CEACAM1 is a transmembrane molecule with either a long (L) or a short (S) cytoplasmic tail. CEACAM1-L, with a long cytoplasmic tail, contains two tyrosine residues which form part of modified immunoreceptor tyrosine-based activation/inhibition motifs (ITAM/ITIM motifs) (16). The relative abundance of the isoforms, which may be present simultaneously in CEACAM1-expressing tissues, may dictate the signaling outcomes of CEACAM1 ligation (35).In addition, Opa structural variations may also affect bacterial specificity and affinity for distinct CEACAMs (10, 40, 44). N. meningitidis and N. gonorrhoeae possess multiple complete copies of opa genes (up to 4 and 11 genes, respectively), with the consequence that distinct isolates may express structurally variant Opa proteins. Variations within the Opa family of transmembrane proteins occur in three of the four surface-exposed loops. It has been shown for strains of distinct serogroups of N. meningitidis that these variations influence the specificity of Opa proteins for different members of the CEACAM family (10, 40). Different meningococcal isolates further possess a wide range of opa alleles, variable regions, and repertoires. Particular Opa repertoires appear to correlate with hyperinvasiveness and disease but not with the severity of meningococcal disease (4). The host cell interface where Opa proteins exert such an influence remains to be defined, and while several studies have assessed the potential of Opa proteins to influence meningococcal interactions with human epithelial cells (15, 44), a limited number of studies have examined their effect on T cells (23), and none have studied the potential of live Opa-expressing meningococci to influence T-cell functions.Previous studies have shown that a number of neisserial outer membrane proteins can modulate T-cell function. Of these, TspA (T-cell-stimulating protein A), IgA1 protease, pili, and porins can induce a proliferative response in T cells (27, 31, 34, 38). In contrast, an interaction of Opa+ N. gonorrhoeae with CEACAM1 inhibited immune responses of CD4+ T cells (2) and B cells (26). In the case of T cells, the inhibitory signal delivered by the N. gonorrhoeae Opa-CEACAM1 interaction was reported to involve the phosphotyrosine phosphatases 1 and 2 (SHP-1 and SHP-2) that interact with ITIM (2, 24). Interestingly, engagement of Opa+ N. gonorrhoeae with CEACAM1 on B cells occurred independently of ITIM involvement (26). Overall, the above reports highlight the following two important points: (i) with respect to cellular activation, the end product of neisseria-target cell interactions may be determined by a number of distinct bacterial and host cell characteristics; and (ii) in the context of the consequences of bacterial engagement with CEACAM1, such an interaction may not always bring into play the expected consequences of its ITIM-like motifs. Other notable observations include the following. Outer membrane vesicles (OMV) of some Opa-expressing N. meningitidis strains have been reported to inhibit CD4+ T-cell function (23), which is in line with CD4+ T-cell-inhibiting effects of Opa+ N. gonorrhoeae (2). However, N. meningitidis carriage is regarded as an immunizing event and has been shown to induce lasting T-cell memory (7, 8).Collectively, these previous reports highlight the need for comprehensive studies to define the consequences of meningococcal interactions with cells of the human immune system, particularly as mucosal bacteria are increasingly being shown to reside in subepithelial tissues, where they may encounter T cells. This may occur, and since no comprehensive studies are yet available on T-cell responses that may ensue upon encountering live N. meningitidis, and particularly on the influence of Opa proteins in general when presented in whole bacteria, the focus of this study was to assess the immune responses of CD4+ T cells to well-characterized phenotypes of live N. meningitidis and to compare these with responses to Escherichia coli cells either expressing or lacking meningococcal Opa proteins. In addition, we compared the effects of heat-killed N. meningitidis and OMV derived from a meningococcal serogroup B strain on T-cell proliferation. The latter preparations are likely to be used as vaccine preparations and therefore, in our view, warranted such studies. In order to assess the T-cell responses to other CEACAM-binding agents and to study the effects of bacterial presence when Opa-CEACAM interactions are inhibited, the studies included cross-linking antireceptor antibodies as well as a recombinant molecule, rD-7, which carries the CEACAM-binding motif of Moraxella catarrhalis UspA1 adhesin (17) and has the potential to block bacterial binding without inducing a signaling cascade in T cells because the recombinant peptide may not cross-link CEACAM1 on T cells.In our studies, frequently, but not invariably, an early Opa-independent transient decrease in T-cell proliferation was observed. This phase was followed by a profound stimulatory effect on T-cell immune functions, as assessed by proliferation assays and cytokine responses. In contrast, using anti-CEACAM1 antibodies in analogous assays, a significant inhibition of T-cell proliferation was observed. Overall, these data show that a certain surface component(s) of pathogenic Neisseria, whose precise identity remains to be determined, can exert either mild inhibitory or strong stimulatory effects on CD4+ T cells and that, most importantly, the latter predominate. Thus, it appears that human CD4+ T cells respond positively to one or more bacterial antigens to overcome any inhibition that may be induced via the engagement of CEACAM1, perhaps representing an advanced counterstrategy of the host.  相似文献   

11.
Transitional cells of the crista ampullaris were impaled with microelectrodes in order to record the membrane potential (PD) and to investigate membrane properties. In control solution the PD was –87±1 mV (n=103). This value is not significantly different from –83±2 mV (n=24) measured in Cl free solution. [Cl] steps from 150 to 15 mmol/l (n=24) depolarized the membrane by about 2 mV, indicating a minor Cl conductance. The transference number for K+ was 0.75±0.01 (n=79) obtained from the PD responses to K+ steps from 3.6 to 25 mmol/l. The cell membrane depolarized and the amplitude of PD responses to [K+] steps was reduced by Ba2+ (2·10–6 to 10–3 mol/l), quinidine (10–3 mol/l), quinine (10–3 mol/l), Rb+ (20 mmol/l), Cs+ (20 mmol/l), NH4 + (20 mmol/l) and Tl+ (0.5 mmol/l), whereas tetraethylammonium (TEA, 20 mmol/l) had no effect. The dose-response curve for Ba2+ in the presence of 3.6 mmol/l K+ was shifted to the right by approximately three decades in the presence of 25 mmol/l K+ and by a factor of about 4 in the presence of 135 mmol/l gluconate as a substitute for Cl. Transitional cells were depolarized by ouabain, suggesting the presence of (Na++K+-ATPase.This work was supported by grants from the Deafness Research Foundation to PhW and the National Institute of Health (NS 19490) to DCM  相似文献   

12.
We have investigated the possible existence of a Na+/H+ ion exchanger in the frog skin epithelium by using isotopic methods and two amiloride analogues: 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) and phenamil. We found phenamil to be a specific blocker of sodium entry to its cellular transport compartment since it inhibited both the transepithelial Na+ influxes (J 13) with aK I of 4·10–7 mol/l and the Na+ pool (control: 77±4 neq·h–1·cm–2; phenamil: 21±1 neq·h–1·cm–2). On the contrary EIPA (10–5 mol/l) had no effect onJ 13 nor on the apical Na+ conductance. Acidification of the epithelium by passing from a normal Ringer (25 mmol/l HCO 3 , 5% CO2, pH 7.34) to a HCO 3 -free Ringer (5% CO2, pH 6.20) while blocking the Na+ conductance with phenamil, produced a large stimulation of Na+ influxes exclusively across the basolateral membranes (J 32), after return to a normal Ringer (J 32=706±76 and 1635±199 neq·h–1·cm–2 in control and acid-loaded epithelia respectively). The stimulation ofJ 32 was initiated when the epithelia were acid-loaded with Ringer of pH lower than 6.90 and was blocked by amiloride (K I=7·10–6 mol/l) and EIPA (K I=5·10–7 mol/l) whereas phenamil had no effect. In na+-loaded epithelia (ouabain treated) the Na+ efflux across the basolateral membranes was stimulated by an inwardly directed proton gradient and was blocked by EIPA (10–5 mol/l) or amiloride (10–4 mol/l), a result suggesting reversibility of the mechanism. We conclude that a Na+ permeability mediated by a Na+/H+ ion exchanger exists in the basolateral membranes, which is stimulated by intracellular acidification and is sensitive to amiloride or EIPA. This exchanger is proposed to be involved in intracellular pH regulation.  相似文献   

13.
We examined the relationship between the cell volume and cation concentration ([Nai] and [Ki]) of isolated segments of rat medullary thick ascending limb (MAL) after incubation at 30°C in various isotonic solutions. When the tubules were incubated in a normal NaCl solution containing 5 mmol/l K+, addition of 1 mmol/l of ouabain increased [Nai] and decreased [Ki] but did not change the total ([Nai]+[Ki]) concentration (about 90 mEq/l) or tubular volume. After incubation in various K+-free solutions, the tubules were almost fully K+-depleted; their volume per unit of length was similar in the three solutions, although the choline Cl-treated tubules had a very low sodium content compared to the NaCl-and Na2SO4-treated tubules (8 vs. 97 and 95 mEq/l respectively). Ouabain altered neither volume nor [Nai] of tubules incubated in choline Cl or Na2SO4 solution. Transfer of tubules from K+-free Na2SO4 or K+-free choline Cl solution into K+-free NaCl solution resulted in an increase in [Nai] (by 29 and 97 mEq/l respectively) without much increase in tubular volume. A marked swelling of the tubules was only observed when the K+-free NaCl solution contained also ouabain. Under this condition, [Nai] was comparable to the Na+ concentration of the incubation medium. After washing and incubation in a normal NaCl solution containing K+, the swollen tubules recovered their initial volume and restored Na+ and K+ concentration gradients across the cell membranes. The ([Nai]+[Ki]) concentration centration measured in the tubules preincubated in choline Cl solution was always smaller than that of the tubules preincubated either in NaCl or Na2SO4 solutions, an observation suggesting that choline ions enter rat MAL cells. Barium (3 mmol/l) prevented tubular swelling. This inhibition corresponded to a smaller increase in [Nai] than that observed in control tubules. Furosemide or bumetanide (even at 0.1 mmol/l) did not alter the increases in tubular volume and in Na+ content induced by ouabain. The data provide additional evidence that the isoosmotic swelling of MAL cells requires an almost full inhibition of Na+-pump activity and involves coupled net fluxes of Na+ and Cl ions.  相似文献   

14.
Expression of the Ha-ras oncogene has been reported to stimulate the dimethylamiloride sensitive Na+/H+ exchanger and Na+, K+, 2Cl cotransport, both transport systems which are involved in cell volume regulation. The present study has been performed to test for an influence of ras oncogene expression on cell volume regulation in NIH 3T3 fibroblasts expressing the Ha-ras oncogene (+ ras). As controls served NIH 3T3 fibroblasts not expressing the ras oncogene (– ras). In isotonic extracellular fluid, the cell volume of + ras cells (2.70±0.08 pl) is significantly greater than the cell volume of –ras cells (2.04±0.10 pl). Both, + ras and – ras cells exhibit a regulatory cell volume increase in hypertonic extracellular fluid and a regulatory cell volume decrease in hypotonic extracellular fluid. The regulatory cell volume decrease is inhibited by 1 mmol/l quinidine and barium, the regulatory cell volume increase is inhibited in – ras and + ras cells by dimethyl-amiloride (100 mol/l) and, only in + ras cells, by furosemide (100 mol/l) and bumetanide (10 mol/l). In conclusion, expression of the ras oncogene leads to a shift of the set point for cell volume regulation to greater cell volumes, which may contribute to the activation of the Na+/H+ exchanger and Na+, K+, 2Cl cotransport.  相似文献   

15.
Cultured vascular smooth muscle cells from porcine aortas incubated in Na+-free medium rapidly release their intracellular Na+ contents (Nai) (23±4% of baseline after 60 min incubation, mean ± SEM of 18 experiments). Total Nai release was inhibited by 35–40% after addition of ouabain and by 60–70% after addition of ouabain + bumetanide. Norepinephrine inhibited ouabain and bumetanide-sensitives Na+ efflux with an IC50 of about 10–9–10–8 M. Addition of the alpha-adrenergic agonist phenylephrine (10 M) to the cells mimicked the inhibitory action of norepinephrine on Nai release. Conversely, the beta-adrenergic agonist isoproterenol was without effect on Nai release. Simultaneous addition of 10 M norepinephrine and the alpha-adrenergic antagonist phentolamine prevented any effect of norepinephrine on the rate of Nai decline. In A-10 cultured vascular smooth muscle cells, the alpha-adrenergic agonist phenylephrine (10 M) inhibited 40.0±8.1% of ouabain-sensitive Rb+ influx and 70.7±6.9% of bumetanide-sensitive Rb+ influx (mean ± SEM of three experiments). 50% inhibition of bumetanide-sensitive Rb+ influx was obtained with about 5×10–7 M of phenylephrine. Our results show that in vascular smooth muscle cells a [Na+, K+, Cl]-cotransport system is able to catalyze outward Na+ movements (in Na+-free media) of a similar order of magnitude to those of the Na+, K+ pump and that alpha-adrenergic stimulation markedly inhibits Na+ efflux (and Rb+ influx) through these two transport systems.  相似文献   

16.
Oxygen consumption, lactate production and tissue contents of ATP, phosphocreatine (PCr) and lactate were measured following readdition of K+ to K+-depleted rat portal veins, in order to study the energy turnover associated with Na+/K+ pumping. During incubation in K+-free medium at 37° C spontaneous contractions disappeared in 10–20 min. Readdition of K+ (5.9 mM) after 40 min K+-free incubation caused hyperpolarization of the cell membrane for the first 5–10 min and then gradual depolarization with return of spontaneous action potentials and contractions by 10–20 min. During the first 4–6 min after K+ readdition aerobic lactate production was about doubled and then gradually returned to the original level (0.17 mol/min g) at about 20 min. The increase in glycolytic rate was prevented by 1 mM ouabain. In contrast, O2 consumption (in K+-free medium, 0.38 mol/min g) rose by about 10% when K+ was added and this increase lasted about 5 min. By 8 min after K+ addition the increased glycolysis and oxidative phosphorylation had accounted for each about the same amount of extra ATP generation over that extrapolated from the steady rate before K+ addition. The average total increase in ATP turnover in the first 8 min was 15%. During this period there was no change in the cellular content of ATP, PCr, or extractable ADP. The results indicate that Na+/K+ pumping utilizes a relatively small share of the total energy turnover in the vascular smooth muscle but is to a large extent dependent on aerobic glycolysis and therefore a major site of carbohydrate usage.  相似文献   

17.
The involvement of large-conductance, voltage- and Ca2+-activated K+ channels (maxi-K+ channels) in basolateral Ca2+-dependent K+-efflux pathways and fluid secretion by the rat submandibular gland was investigated. Basolateral K+ efflux was monitored by measuring the change in K+ concentration in the perfusate collected from the vein of the isolated, perfused rat submandibular gland every 30 s. Under conditions in which the Na+/K+-ATPase and Na+-K+-2Cl cotransporter were inhibited by ouabain (1 mmol/l) and bumeta-nide (50 mol/l) respectively, continuous stimulation with acetylcholine (ACh) (1 mol/l) caused a transient large net K+ efflux, followed by a smaller K+ efflux, which gradually returned to the basal level within 10 min. These two components of the K+ efflux appear to be dependent on an increase in cytosolic Ca2+ concentration. The initial transient K+ efflux was not affected by charybdotoxin (100 nmol/l) or tetraethylammonium (TEA) (5 mmol/l) but the smaller second component was strongly and reversibly inhibited by charybdotoxin (100 nmol/l) and TEA (0.1 and 5 mmol/l). The initial K+ efflux transient induced by ACh was inhibited by quinine (0.1–3 mmol/l), quinidine (1–3 mmol/l) and Ba2+ (5 mmol/l), but not by verapamil (0.1 mmol/l), lidocaine (1 mmol/l), 4-aminopyridine (1 mmol/l) or apamin (1 mol/l). Ca2+-dependent transient large K+ effluxes induced by substance P (0.01 mol/l) and A23187 (3 mol/l) were not inhibited by TEA (5 mmol/l or 10 mmol/l). A23187 (3 mol/l) evoked a biphasic fluid-secretory response, which was not inhibited by TEA (5 mmol/l). Patch-clamp studies confirmed that the whole-cell outward K+ current attributable to maxi-K+ channels obtained from rat submandibular endpiece cells was strongly inhibited by the addition of TEA (1–10 mmol/l) to the bath. It is concluded that maxi-K+ channels are not responsible for the major part of the Ca2+-dependent basolateral K+ efflux and fluid secretion by the rat submandibular gland.  相似文献   

18.
The mechanism of uphill Cl accumulation by mouse lacrimal acinar cells was studied using double-barrelled Cl-selective microelectrodes. When measured in standard tris-buffered saline solution, the membrane potential (V m) was –39.2±0.4 mV and intracellular Cl activity (A Cl i ) was 34.6±0.7 mmol/l which was 1.4 times higher than the equilibrium level. In Na+-free solution,A Cl i decreased from 34 mmol/l to 19 mmol/l in 100 min, a level that was close to the equilibrium activity. Return to the standard solution restored the normal level ofA Cl i in 5 min. In the presence of furosemide (1 mmol/l), Cl uptake induced by Na+-readmission was inhibited by 44%. Superfusion with a K+-free solution gradually decreasedA Cl i until it was close to the equilibrium level after 75 min; superfusion with a high-K+ (29.5 mmol/l) solution increasedA Cl i significantly. In the presence of ouabain (1 mmol/l), switching the superfusing solutions from K+-free to high-K+ and from high-K+ to K+-free at timed intervals of 15 min caused, respectively, an increase (+9 mmol/l) and a decrease (–7 mmol/l) inA Cl i . These changes inA Cl i were inhibited by furosemide respectively by 61% and 24%. In the presence of furosemide, DIDS (1 mmol/l) or furosemide plus DIDS, the initial rate of Cl uptake after cessation of acetylcholine (ACh 1 mol/l) stimulation was inhibited by 47%, 37% or 74%, respectively. Present results show that the characteristics of the uphill chloride uptake by the mouse lacrimal acinar cells are consistent with those of Na+–K+–Cl cotransport. The additional inhibitory effect of DIDS to furosemide inhibition suggests an involvement of anion exchange transport, in parallel with the cotransport, in uphill Cl uptake into the cells.  相似文献   

19.
In a previous study [26] we described the properties of potassium channels in cultured respiratory cells derived from cystic fibrosis patients (CF) and normal individuals (N). In the present study we examine the regulatory mechanisms of these channels by the patch clamp technique. Since there were no apparent differences in the properties of CF and N K+ channels the results were pooled. In the excised inside/out configuration the channel was blocked by different K+ channel blockers. Barium (5 · 10–3 mol/l), retraethylammoniumchloride (5 · 10–3 mol/l), quinidine 10–3 mol/l) and lidocaine (5 · 10–3 mol/l), when added to the cytosolic side, inhibited K+ channels reversibly. An increase in the calcium concentration from 10–7 mol/l to 10–6 mol/l led to a marked increase in the open channel probability (P o). Further increases in Ca2+ concentration increasedP o only slightly. No pH effects on the cytosolic side of the channel were observed. The channel open probability was reduced when ATP was present on the cytosolic side at a concentration of 10–4 mol/l to 10–3 mol/l. Non hydrolysable adenosine 5-[,-methylene] triphosphate had the same inhibitory effect as ATP. The inhibition by ATP was blunted by the simultaneous addition of 1 mmol/l ADP. The inhibition of K+ channels by cytosolic ATP may represent a channel regulatory mechanism in the intact cell. This would allow for coupling between the activity of the (Na++K+)-pump and the basolateral K+ conductance.  相似文献   

20.
Summary The existence of an ouabain-sensitive (Na+–K+)-activated ATPase system has been demonstrated in the total intestine of the rat. The (Na+–K+)-ATPase activity was about 10–15% of the total ATPase in 4 equal parts of the small intestine; in the colon about 35% of the total ATPase was (Na+–K+)-activated ATPase. The highest (Na+–K+)-ATPase activity has been observed in the first and second part of the small intestine, while in the colon the activity was 2–4 times higher than in the ileum.The (Na+–K+)-ATPase of rat colon required both Na+ (K m=8.3 mmoles/l) and K+ (K m=0.6 mmoles/l). Maximal activation of the (Na+–K+)-ATPase system required 2 mM Mg2+ at an ATP concentration of 2 mM. The pH optimum for (Na+–K+)-ATPase of rat colon was 7.5, while the Mg2+-activated ATPase activity had a pH optimum of 8.6. The (Na+–K+)-ATPase was inhibited by ouabain (pI 50=3.6).The relation between the differences in (Na+–K+)-ATPase activity and Na+-absorption on different parts of the intestine is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号