首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
背景:大量研究表明丝素蛋白、壳聚糖为天然高分子材料,具有良好的细胞生物相容性。 目的:探讨丝素蛋白/壳聚糖复合支架材料与诱导的兔骨髓间充质干细胞的生物相容性。 方法:将兔骨髓间充质干细胞分离培养、诱导后,与丝素蛋白/壳聚糖三维支架材料体外共培养,以材料的细胞毒性、细胞增殖活力、材料细胞黏附率及扫描电镜等检测评价材料的细胞相容性。 结果与结论:经诱导后的骨髓间充质干细胞在支架材料上黏附、生长良好,保持正常的分裂增殖速度;随时间的增加,细胞黏附率增加,材料组较对照组黏附率强,差异有显著性意义(P < 0.05)。扫描电镜观察发现细胞接种48 h后细胞生长良好,与支架黏附紧密,增殖分裂活跃。说明丝素蛋白/壳聚糖三维支架材料具有良好的细胞相容性。  相似文献   

2.
背景:壳聚糖/聚己内酯共混材料在生物材料领域具有广泛的应用前景,但与蛋白、细胞反应机制尚不明确。 目的:观察壳聚糖/聚己内酯共混膜表面蛋白黏附和细胞活性。 方法:将不同配比的壳聚糖/聚己内酯混合溶液旋转涂膜法成膜。分别通过原子力显微镜、滴形分析仪、石英晶体天平和MTT比色法测量膜的表面形貌、亲疏水性、蛋白吸附和细胞增殖活性。 结果与结论:膜的表面形貌、亲疏水性、蛋白吸附和细胞增殖活性在很大程度上取决于壳聚糖和聚己内酯的质量配比。细胞在壳聚糖膜上具有较好的伸展形态,在聚己内酯膜上具有较高的增殖活性。  相似文献   

3.
通过研究马来酸酐改性聚乳酸(MPLA)和聚乳酸(PDLLA)材料表面对MC3T3-E1成骨细胞形态、黏附、增殖、细胞总蛋白含量、碱性磷酸酶活性及细胞分泌无机钙含量的影响,评价MPLA和PDLLA材料的细胞相容性。结果显示:与PDLLA相比,MPLA材料上的成骨细胞完全黏附和充分铺展;MPLA材料上细胞的增殖速率、细胞总蛋白含量、细胞碱性磷酸酶活性及细胞分泌的无机钙含量都显著高于PDLLA(P<0.01)。这些结果说明,MPLA材料能促进MC3T3-E1成骨细胞的黏附、铺展、增殖及蛋白质的合成,并能促进成骨细胞的分化和矿化,与PDLLA材料相比具有更好的细胞相容性。  相似文献   

4.
背景:基于聚电解质阴阳离子交替组装的静电自组装技术可在温和、简单、易控的条件下实现多种生物大分子在材料表面的固定,已成为生物材料表面设计的重要手段。目的:利用静电自组装技术将具有生物活性的壳聚糖和肝素固定在钛表面,实现钛表面的氨基多糖生物化修饰,构建一种钛种植体材料的新型生物化表面,以改善钛的细胞相容性。方法:首先采用NaOH处理钛基材,获得多孔、负电荷的钛表面;然后吸附一层正电荷的聚赖氨酸;最后,多次交替吸附负电荷的肝素和正电荷的壳聚糖,形成以壳聚糖为最外层的多层膜结构。通过漫反射红外光谱扫描电镜和原子力显微镜对多层膜进行表征。并与成骨细胞共培养,观察成骨细胞的黏附、增殖以及分化情况。结果与结论:红外光谱、原子力显微镜、扫描电镜结果表明肝素-壳聚糖多层膜逐渐形成。此涂层可促进成骨细胞的黏附、增殖和分化。肝素-壳聚糖多层膜有望成为一种新型的生物化钛表面,从而改善钛表面的生物相容性。  相似文献   

5.
壳聚糖-透明质酸共混膜对兔角膜基质细胞生长的影响   总被引:1,自引:0,他引:1  
观察各种壳聚糖-透明质酸共混膜对角膜基质细胞生长的影响作用,研究透明质酸混入比例对共混膜与细胞相容性的影响.以共混膜为载体培养兔角膜基质细胞,通过光学和电子显微镜,观察细胞在膜上的生长情况;通过MTT法,检测细胞在共混膜上的贴附率和生长活性;通过检测培养基中乳酸脱氢酶的活性,预示壳聚糖-透明质酸共混膜与角膜基质细胞的相容性.以低于1:0.1的比例混入透明质酸.可以提高细胞在共混膜上的贴附率、生长速度,细胞在共混膜上的生长状态好于在壳聚糖膜上的生长状态.结果提示,以低于1:0.1的比例混入透明质酸,可以提高壳聚糖膜与角膜基质细胞的相容性,促进细胞生长;而以高于1:0.1的比例混入透明质酸,则不利于细胞在共混膜上的生长,降低了壳聚糖膜与角膜基质细胞的相容性.  相似文献   

6.
背景:在保留丝素蛋白原有优点的基础上,采用带正电荷的水溶性壳聚糖对其表面进行修饰,可改善细胞在支架材料上的黏附性。目的:验证壳聚糖表面修饰丝素蛋白支架材料与人脂肪间充质干细胞的生物相容性及两者体外构建组织工程脂肪的可行性。方法:将第3代人脂肪间充质干细胞悬液以1×107 L-1浓度接种于壳聚糖表面修饰丝素蛋白支架材料上作为实验组,以单纯的细胞悬液为对照组,MTT法检测细胞在支架材料上的黏附和增殖能力。将第3代人脂肪间充质干细胞悬液以1×109 L-1浓度接种于壳聚糖表面修饰丝素蛋白支架材料上,分别进行成脂诱导培养与高糖培养基常规培养,14 d后行细胞-支架复合物油红O染色与RT-PCR检测。结果与结论:人脂肪间充质干细胞在壳聚糖表面修饰丝素蛋白支架材料上黏附、增殖良好。成脂诱导14 d后,油红O染色显示壳聚糖修饰丝素蛋白支架材料上有大量脂肪细胞生成,且过氧化物酶增殖物活化受体γ2基因表达阳性。结果表明壳聚糖表面修饰丝素蛋白支架材料具有良好的体外生物相容性,与人脂肪间充质干细胞共培养可被成功诱导为成熟脂肪细胞。  相似文献   

7.
研究壳聚糖水凝胶材料与星形胶质细胞的体外生物相容性,初步探讨壳聚糖水凝胶作为神经组织工程支架材料的可行性.利用氯化壳聚糖、β-甘油磷酸钠和羟乙基纤雏素制备壳聚糖水凝胶,MTT法评价其细胞毒性;体外培养鉴定新生Wistar大鼠脑皮层星形胶质细胞;壳聚糖水凝胶与星形胶质细胞体外共培养,观察星形胶质细胞在材料上的生长;MTT...  相似文献   

8.
壳聚糖/纳米羟基磷灰石分层复合支架的生物相容性研究   总被引:2,自引:0,他引:2  
制备壳聚糖/纳米羟基磷灰石(CS/nHA)分层复合支架,对其进行细胞毒性评价.分离培养大鼠软骨细胞接种于支架,相差显微镜和扫描电镜观察细胞的黏附及生长情况.动物皮下埋植试验观察其组织相容性.实验结果证实壳聚糖/纳米羟基磷灰石分层复合支架具有良好的生物相容性,有望成为较好的骨软骨组织工程支架.  相似文献   

9.
目的 观察RNA干扰(RNAi)体外培养的HeLa细胞端粒酶催化亚单位(hTERT)对HeLa细胞生物学行为的影响,进一步探讨端粒酶活性与肿瘤细胞恶性生物学行为的相关性.方法 体外转录法设计合成4条针对hTERT基因的shRNA,脂质体转染HeLa细胞后经免疫荧光染色和端粒重复序列扩增-酶联免疫法(TRAP-ELISA)测定端粒酶活性,筛选出端粒酶沉默效果最佳片段即B链shRNA.以B链shRNA转染HeLa细胞为实验组,转染无关siRNA的HeLa细胞为对照组,显微镜下观察细胞在纤维黏连蛋白(FN)上的铺展;CCK-8细胞计数试剂盒检测细胞在FN上黏附;划痕实验评价细胞迁移;Boyden小室侵袭实验检测细胞侵袭能力.结果 铺展实验显示细胞接种到FN上30 min时,对照组铺展细胞的比率为(31.3±7.9)%,而实验组铺展细胞的比率仅为(5.6±2.3)%,两组差异有统计学意义(P<0.01);2 h后对照组和实验组铺展细胞的比率分别为(79.4±4.8)%和(26.3±6.1)%,两组差异仍有统计学意义(P<0.01);24 h后两组所有细胞几乎均呈铺展状态.细胞黏附实验显示细胞在FN上黏附30 min时对照组细胞黏附率为(83.7±5.4)%,而实验组的细胞黏附率为(67.2±2.8)%,明显低于对照组(P<0.05).划痕实验检测细胞的迁移能力显示实验组细胞24 h迁移率为(27.1±6.2)%,明显低于对照组(58.7±15.0)%.Boyden小室侵袭实验显示在Matrigel胶上培养4 h后,实验组和对照组侵袭的细胞数分别为75.7±14.5和165.1±11.0,差异有统计学意义(P<0.05).结论 降低体外培养HeLa细胞的端粒酶活性使细胞的生物学特性发生改变,表现为减低了HeLa细胞的恶性生物学行为.  相似文献   

10.
将RGD-重组蛛丝蛋白(pNSR32)、聚己内酯(PCL)和壳聚糖(CS)共混,应用静电纺丝技术制备复合纳米纤维支架(pNSR32/PCL/CS),进行细胞相容性的初步研究.选择体外细胞培养法,以内皮细胞为种子细胞,应用MTT比色法评价材料浸提液细胞毒性及材料对内皮细胞粘附、生长及增殖的影响,细胞免疫荧光法检测与支架复...  相似文献   

11.
A two-component pH-sensitive hydrogel system composed of a water-soluble chitosan derivative (N,O-carboxymethyl chitosan, NOCC) and alginate cross-linked by genipin, glutaraldehyde or Ca2+ was investigated. Preparation and structures of these hydrogels and their swelling characteristics and release profiles of a model protein drug (bovine serum albumin, BSA) in simulated gastrointestinal media are reported. At pH 1.2, the swelling ratios of the hydrogels cross-linked by distinct methods were limited. Of note is that the lowest swelling ratios of test hydrogels were found at pH 4.0. At pH 7.4, the carboxylic acid groups on test hydrogels became progressively ionized and led to a significant swelling. There was barely any BSA released from the glutaraldehyde-cross-linked hydrogel throughout the entire course of the study. The amounts of BSA released at pH 1.2 from the genipin- and Ca(2+)-cross-linked hydrogels were relatively low (approx. 20%). At pH 4.0, there was still significant BSA release from the Ca(2+)-cross-linked hydrogel, while the cumulative BSA released from the genipin-cross-linked hydrogel was limited due to its shrinking behavior. At pH 7.4, the amount of BSA released from the genipin- and Ca(2+)-cross-linked hydrogels increased significantly (approx. 80%) because the swelling of both test hydrogels increased considerably. The aforementioned results indicated that the swelling behaviors and drug-release profiles of these test hydrogels are significantly different due to their distinct cross-linking structures.  相似文献   

12.
In this study, novel nanoparticles were prepared by polyelectrolyte complexation between heparin and chitosan on simple and mild conditions. The size, polydispersity, zeta potential, and morphology of the nanoparticles were characterized. Entrapment studies of the nanoparticles were conducted using bovine serum albumin (BSA) as a model protein. Specifically, the effects of the pH value of chitosan solution, chitosan molecular weight (MW), chitosan concentration, heparin concentration, and BSA concentration on the nanoparticle size, the nanoparticle yield, and BSA entrapment were studied in detail. We found that, the size and the yield of the nanoparticles were affected by the above factors. The nanoparticle yield played a crucial role in BSA entrapment, namely, more nanoparticles could encapsulate more BSA. At length, suitably high pH value of chitosan solution, moderate chitosan MW, increasing both heparin concentration and chitosan concentration at an optimal concentration ratio favored more nanoparticles formed and consequently a higher BSA entrapment efficiency.  相似文献   

13.
Lin YH  Liang HF  Chung CK  Chen MC  Sung HW 《Biomaterials》2005,26(14):2105-2113
In the study, a complex composed of alginate blended with a water-soluble chitosan (N,O-carboxymethyl chitosan, NOCC) was prepared to form microencapsulated beads by dropping aqueous alginate-NOCC into a Ca(2+) solution. These microencapsulated beads were evaluated as a pH-sensitive system for delivery of a model protein drug (bovine serum albumin, BSA). The main advantage of this system is that all procedures used were performed in aqueous medium at neutral environment, which may preserve the bioactivity of protein drugs. The swelling characteristics of these hydrogel beads at distinct compositions as a function of pH values were investigated. It was found that the test beads with an alginate-to-NOCC weight ratio of 1:1 had a better swelling characteristic among all studied groups. With increasing the total concentration of alginate-NOCC, the effective crosslinking density of test beads increased significantly and a greater amount of drug was entrapped in the polymer chains (up to 77%). The swelling ratios of all test groups were approximately the same ( approximately 3.0) at pH 1.2. At pH 7.4, with increasing the total concentration of alginate-NOCC, the swelling ratios of test beads increased significantly (20.0-40.0), due to a larger swelling force created by the electrostatic repulsion between the ionized acid groups (-COO(-)). It was shown that BSA was uniformly distributed in all test beads. At pH 1.2, retention of BSA in hydrogels may be improved by rinsing test beads with acetone (the amount of BSA released was below 15%). At pH 7.4, the amounts of BSA released increased significantly ( approximately 80%) as compared to those released at pH 1.2. With increasing the total concentration of alginate-NOCC, the release of encapsulated proteins was slower. Thus, the calcium-alginate-NOCC beads with distinct total concentrations developed in the study may be used as a potential system for oral delivery of protein drugs to different regions of the intestinal tract.  相似文献   

14.
Polyvinyl alcohol (PVA) hydrogels blended with chitosan or other biological macromolecules have shown promise for cell culture and tissue engineering. This study investigates the attachment and growth of bovine aortic endothelial (BAEC) and smooth muscle cells (BASMC) on the PVA hydrogels modified with water soluble and water insoluble chitosan. Cell adhesion on the surface of the membranes was examined by phase contrast microscopy while cell morphologies were studied using immunocytochemistry staining with EC and SMC specific biomarkers (F-actin and alpha actin respectively). Cells cultured on 6% PVA, 0.4% chitosan (water soluble and insoluble) hydrogel membranes displayed excellent adhesion and spreading characteristics, in addition to negligible cell structural morphological changes in comparison to a polystyrene control. Similar vascular cell adhesion features were apparent on PVA membranes blended with water-soluble and -insoluble chitosan. Fluorescent activated cell sorter (FACS) analysis was used to determine BAEC and BASMC proliferation and cell viability. Apoptotic levels in BAEC after 7 days were 12.8% +/- 2.5% on the PVA- chitosan WS-1 membrane and 10.1% +/- 1.5% on the control well (n = 3) while comparable results were also noted for BASMC. Equivalent proliferative activity was apparent for BAEC on the control and PVA-chitosan membrane after 7 days, while BASMC showed increased proliferative activity on the membranes. These results indicate that the PVA-chitosan blended hydrogel membranes show promise for cell culture and tissue engineering applications.  相似文献   

15.
In this work, the properties of nylon, chitosan, and their blended membranes were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide-angle X-ray diffraction analysis. The SEM photographs show that the undulating surface of the nylon membrane became less obvious by blending with chitosan. The DSC and X-ray diffraction analysis show that constitutionally different features in the combination of two polymer chains were revealed, suggesting that nylon and chitosan are immiscible at the microscopic level in the blended membranes. Furthermore, an attempt was made to understand whether the two components contribute independently to the adhesion, growth, and activation of MG-63 osteoblastlike cells. The cell adhesion increased with increasing chitosan content, indicating that the affinity between the cells and the membranes increased with increasing chitosan content. Although the blended membranes with higher nylon content exerted an inhibitory effect on cell adhesion, cells cultured on the nylon membrane proliferated at higher rates and the nylon membrane was the least stimulating of MG-63 cell cytokine production over a 4-day period when compared with all the other membranes. Combined with the result of cell growth and cell activation, the chitosan content in the blended membrane did not proportionally influence the behavior of MG-63 cells. It is proposed that cell's size was larger than the scale of nylon or chitosan domain in the blended membranes because of the incomplete miscibility between them. Therefore, even if the composition of the blended membranes is systematically changed, every cell covers a multiphase surface that is considered a totally new material for cells. Consequently, cell growth and cell activation on a blended membrane are not simply proportional to their composition. In contrast, cell adhesion is a simpler process, like a physical adsorption process, which is related to the bulk property of a blended membrane.  相似文献   

16.
We have studied the influence of oxygen radio frequency glow discharge (RfGD) on the surface and bulk properties of poly(D,L-lactic acid) (PDLLA) and the effect of this surface modification on both protein adsorption and bone cell behavior. PDLLA films were characterized before and after plasma surface modification by water contact angle, surface energy, and adhesion tension of water as well as by scanning electron microscopy (SEM), X-ray electron spectroscopy (XPS), and Fourier transform infra-red (FTIR) spectroscopy. RfGD-films showed an increase in hydrophilicity and surface energy when compared with untreated films. Surface morphological changes were observed by SEM. Chemical analysis indicated significant differences in both atomic percentages and oxygen functional group. Protein adsorption was evaluated by combining solute depletion and spectroscopic techniques. Bovine serum albumin (BSA), fibronectin (FN), vitronectin (VN), and fetal bovine serum (FBS) were used in this study. RfGD-treated surfaces adsorbed more BSA and FN from single specie solutions than FBS that is a more complex, multi-specie solution. MG63 osteoblast-like cells and primary cultures of fetal rat calvarial (FRC) cells were used to assess both the effect of RfGD treatment and protein adsorption on cell attachment and proliferation. In the absence of preadsorbed proteins, cells could not distinguish between treated and untreated surfaces, with the exception of MG63 cells cultured for longer periods of time. In contrast, the adsorption of proteins increased the cells' preference for treated surfaces, thus indicating a crucial role for adsorbed proteins in mediating the response of osteogenic cells to the RfGD-treated PDLLA surface.  相似文献   

17.
Decades of contradictory results have obscured the exact role of adsorbed fibronectin in the adhesion of the bacterium, Staphylococcus epidermidis, to biomaterials. Here, the ability of adsorbed fibronectin (FN) or bovine serum albumin (BSA) to modulate S. epidermidis adhesion to various biomaterials is reported. FN or BSA was adsorbed in increasing surface densities up to saturated monolayer coverage onto various common biomaterials, including poly(ethylene terephthalate), fluorinated ethylene propylene, poly(ether urethane), silicone, and borosilicate glass. Despite the wide range of surface characteristics represented, adsorption isotherms varied only subtly between materials for the two proteins considered. S. epidermidis adhesion to the various protein-coated biomaterials was quantified in a static-fluid batch adhesion assay. Although slight differences in overall adherent cell numbers were observed between the various protein-coated substrata, all materials exhibited significant dose-dependent decreases in S. epidermidis adhesion with increasing adsorption of either protein (FN, BSA) to all surfaces. Results here indicate that S. epidermidis adhesion to FN-coated surfaces is not a specific adhesion (i.e., receptor: ligand) mediated process, as no significant difference in adhesion was found between FN- and BSA-coated materials. Rather, results indicate that increasing surface density of either FN or BSA actually inhibited S. epidermidis adhesion to all biomaterials examined.  相似文献   

18.
In order to develop a novel biomaterial, films of chitosan blended with poly(3-hydroxybutyrate) (PHB) were prepared by an emulsion blending technique and their properties were characterized. Scanning electron microscopy (SEM) showed that PHB microspheres were formed and were entrapped in chitosan matrices, which made the film surface rough. With increasing PHB content, the roughness of the film surface increased, while the swelling capability of the films decreased. In a wet state, the blended films exhibited a lower elastic modulus, a higher elongation-at-break and a higher tensile strength compared with chitosan films. Cell-culture experiments revealed that the blended films had better cytocompatibility than chitosan films. To explore the potential application of the blended material in tissue engineering, the porous blended scaffolds were fabricated and their pore morphology was observed by SEM. The results revealed that not only pore structure but also pore wall morphology of the blended scaffolds could be controlled by selecting the parameters of the fabrication process. These advantageous properties indicate that the blended chitosan/PHB material is promising for tissue engineering applications.  相似文献   

19.
W Y Chuang  T H Young  C H Yao  W Y Chiu 《Biomaterials》1999,20(16):1479-1487
In this work, the properties of poly(vinyl alcohol) (PVA) and PVA/chitosan blended membranes were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and electron spectroscopy for chemical analysis (ESCA). The SEM photographs show the PVA/chitosan blended membrane undergoes dramatic changes on the surface and bulk structure during the membrane formation. The DSC analysis shows that PVA and chitosan are not very compatible in the PVA/chitosan blended membrane, whereas the combination of two polymer chains of constitutionally different features is revealed. In addition, the surface of the PVA/chitosan blended membrane is enriched with nitrogen atoms at the ESCA analysis. These reflect the PVA membrane can be modified by blending with chitosan that in turn may affect the biocompatibility of the blended membrane. Therefore, adhesion and growth of fibroblasts on the PVA as well as PVA/chitosan blended membranes were investigated. Cell morphologies on the membranes were examined by SEM and cell viability was studied using MTT assay. It was observed that the PVA/chitosan blended membrane was more favorable for the cell culture than the pure PVA membrane. Cells cultured on the PVA/chitosan blended membrane had good spreading, cytoplasm webbing and flattening and were more compacting than on the pure PVA membrane. Consequently, the PVA/chitosan blended membrane may spatially mediate cellular response that can promote cell attachment and growth, indicating the PVA/chitosan blended membrane should be useful as a biomaterial for cell culture.  相似文献   

20.
A polyethersulfone (PES) membrane was modified by blending with a co-polymer of acrylic acid (AA) and N-vinyl pyrrolidone (VP), followed by immobilization of bovine serum albumin (BSA) onto the surface. The scanning electron microscopy results showed that PES had good miscibility with the co-polymer. X-ray photoelectron spectroscopy confirmed the existence of P(VP-AA) co-polymer on the surface of the blended membrane and the existence of BSA after the immobilization process. The amount of BSA immobilized on the surface of the membranes was determined. It was found that the protein adsorption amounts from BSA, human plasma fibrinogen and diluted human plasma solutions decreased significantly after modification. According to the circular dichroism results, the proteins kept more α-helix conformation in the modified membranes than in the pure PES membrane. The number of the adhered platelets was reduced, and the morphology change for the adherent platelets was also suppressed by the modification with BSA. The SEM morphological observation of the cells and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated that the BSA-modified PES membrane surface promoted endothelial cell adhesion and proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号