首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
我国生物力学研究现状与展望   总被引:1,自引:0,他引:1  
生物力学是研究生命体运动和变形的学科,通过生物学与力学原理方法的有机结合,认识生命过程的规律,解决生命与健康领域的科学问题。生物力学研究领域最新的主要进展和发展趋势是力学生物学和生物力学建模分析及其临床应用。文中介绍了我国生物力学研究在心血管力学生物学、分子生物力学、骨关节与软组织生物力学、临床医学和康复工程生物力学,以及生物力学在空间生命科学、生物材料、体育运动和生物医学技术中应用与交叉等领域所取得的具有国际水平的新成果。这些研究不仅对于揭示正常机体生长、发育和衰老的机理和自然规律,而且对于阐明机体疾病的发病机理以及提供诊断和治疗的一些基本原理,包括新型药物和新技术的研发,都将有重要的理论和实际意义。展望我国生物力学学科发展,应进一步加强学科交叉融合与交叉创新能力,在解决关键科学问题,明确力学因素在疾病发生发展中作用的同时,要致力于发展相关的新技术新方法,紧密联系临床防病治病,在提出具有生物力学特色的新思路上有所作为,为人类健康事业做出应有的贡献。  相似文献   

2.
心血管生物力学研究的新进展   总被引:1,自引:0,他引:1       下载免费PDF全文
心血管生物力学研究领域最重要的新进展有两个方面:一是心血管力学生物学研究。阐明力学因素如何产生生物学效应而导致血管重建,研究心血管信号转导通路和力学调控途径,从细胞分子水平深入了解心血管活动和疾病发生的本质;二是以临床影像为基础的心血管生物力学建模与个体化手术设计研究。应用流体力学理论,结合医学影像和先进的流场测试技术,进行心血管建模与定量分析,研究心血管功能新的无创检测技术和个体化治疗体系设计,为心血管病的诊断、治疗和预警提供生物力学的解决方案。本期心血管生物力学专刊发表了7篇国内同行的相关研究论文。这些论文的内容涵盖了血管壁细胞力学生物学和紧密结合临床的心血管生物力学建模研究,反映了我国心血管生物力学研究的一些新进展。  相似文献   

3.
力学因素调控血管生理性稳态和病理性重建的机制是力学生物学中应力-生长研究的重要内容,迄今尚未完全阐明。蛋白质组学这一高通量、系统性的新技术在血管力学生物学领域的应用,将生物力学、蛋白质组学、生物信息学与分子生物学相关研究理念和研究技术相结合,能够为心血管疾病发病机理研究和血管重建药物治疗靶向的寻找提供一个全新的力学生物学视角,也体现了学科交叉融合的创新特色和科学价值。近年来,上海交通大学力学生物学研究所遵循"力学生物学实验发现现象-生物信息学分析-生物学实验验证结论"开展了多学科相结合的系统性研究,建立了可能的血管细胞内机械应力信号传导网络。此外,基于力-血管蛋白质组学研究,揭示了60多种新的、可能参与了机械应力细胞内信号传导过程的信号分子,并深入探讨部分分子在应力调控血管细胞功能中的作用及分子机制。在研究所工作的基础上,综述了近年来力-血管蛋白质组学相关研究进展。力-血管蛋白质组学的研究工作有望为高血压、动脉粥样硬化等心血管疾病血管重建病理机制揭示、临床治疗潜在靶点寻找提供重要的力学生物学实验依据。  相似文献   

4.
心血管系统对整个生物体起着至关重要的作用。它执行许多重要功能,如为器官和组织提供营养、激素、向细胞输送氧气和维持生理温度。长期以来,准确识别机体血管壁的体内非线性、各向异性的力学特性一直被认为是心血管生物力学领域的关键挑战之一,因为这些特性是整个心脏功能的关键决定因素。目前,机械力和组织力学特性在动脉瘤、动脉粥样硬化等心血管疾病中的作用仍然是基础与临床研究的热点。本综述总结了2022年心血管生物力学与力学生物学领域的最新研究进展。在心血管生物力学方面,研究者关注心血管系统的结构、功能和病理生理学,并利用力学模型等方法来研究这些问题;主要包括动脉粥样硬化、动脉瘤和心肌梗死等疾病的生物力学特性研究,以及基于心血管系统动力学的治疗方法的开发和测试。在力学生物学方面,研究者探索了心血管细胞的力学特性和细胞外基质力学特性等;主要包括基于机器学习的细胞力学性质预测、生物材料力学性能研究以及力学特性在心血管细胞表型变化中的作用。这些研究成果为心血管疾病的诊断和治疗提供新的思路和方法,并为生物力学和力学生物学领域的研究提供新的启示。  相似文献   

5.
血管重建(vascularremodeling)是指机体在生长发育、衰老和疾病等过程中,血管为适应体内外环境的变化而发生的形态结构和功能的改变。心血管疾病如高血压等是以动脉内皮细胞完整性破坏、平滑肌和成纤维细胞增生为主的疾病,都发生血管重建。研究高血压和低血压状态下血管重建的规律,探讨血管的应力.生长关系,对于了解正常血液循环生物力学机理,阐明心血管疾病的发病机制以及提供诊断、治疗的基本原理都将有重要理论和实际应用意义。一、研究内容和研究方法1.主动脉弓的几何形态、显微结构及重建本文采用组织连续切片和计算机图像分…  相似文献   

6.
心血管力学生物学与医学工程研究   总被引:1,自引:0,他引:1  
生物力学不仅是力学的一个分支,而且是生物医学工程的一个重要组成部分。世界著名生物力学大师、中国科学院首批外籍院士、美国国家科学院院士、美国国家工程院院士、美国国家医学科学院院士Y.C.Y ung(冯元桢)先生曾指出:“绝大多数生物力学工作的目的是为了丰富生命系统的基本知识并对其进行某种人为干涉”。随着细胞分子生物学的深入发展,上世纪九十年代以来,生物力学研究也深入到了细胞分子水平,逐渐形成了一个新兴的交叉学科领域“力学生物学(m echanobiology)”。力学生物学是研究力学环境(刺激)对生物体健康、疾病或损伤的影响,研究生物体的力学信号感受和响应机制,阐明机体的力学过程与生物学过程,如  相似文献   

7.
<正>上海交通大学生命科学技术学院力学生物学研究所是该校"985"重点建设实验室之一。该所以心血管力学生物学(mechanobiology)、血管干细胞与组织工程为主要研究方向,在血管力学生物学研究领域特色明显。该所以血管重建(remodeling)为切入点,着眼于力学环境对血管系统的作用,从整体、器官、组织、细胞和分子不同层次,综合探讨血管的"应力-生长"关系;关注"力学因  相似文献   

8.
李宁  龙勉 《医用生物力学》2022,37(4):584-590
细胞处于复杂的生理力学和物理环境中,前者包括剪切、拉伸、压缩、扭转等,后者则涵盖细胞外基质硬度与拓扑、空间限位、体积受限、渗透压力等,呈现多方式、多模态和多参数的特点。细胞力学重点关注细胞力学性质变化及其亚细胞组元的力学重建,不同力学和物理环境下细胞发育、生长、增殖、分化和凋亡的动力学过程,细胞对作用力的感知、传递、传导和响应机制及其与周围环境的相互作用等。本文综述了2021年度细胞力学研究在心血管、骨、免疫、肿瘤、干细胞等方面的主要进展,并涵盖了相关新技术的发展。  相似文献   

9.
1引言生物力学是生命科学的重要组成部分,也是生物医学工程和理论与应用力学的新的分支学科。它是多种学科相互交叉、相互渗透所形成的一个新兴边缘学科。生物力学利用连续介质力学、多相介质力学、断裂损伤力学和流变力学等力学基本原理,结合生理学、医学、生物学来研究生物体,特别的人体的功能、生长、消亡以及运动的规律。最终服务于临床诊断与治疗、生物医学工程和生物技术等高新技术领域,以及人类保健事业。生物力学的宗旨是寻求能更精细地描述活组织及器官工作机理的新的生理学原  相似文献   

10.
正心血管系统是一个以心脏为动力(泵)的力学系统,大量研究表明力学因素在心血管疾病血管重建发生、发展过程中起到直接而明显的作用。应用力学和生物学交叉融合的理念和技术,探讨应力刺激诱导血管重建的分子机制已成为力学生物学研究领域的前沿热点之一。近年来,我们关注了细胞核这一细胞内刚度(stiffness)最高和基因转录发生的亚细胞结构,开展了"分子-细胞-组织-动物整体"的多层次研究,探讨细胞核骨架蛋白在应力诱导血管重建中的力学生物学机制。  相似文献   

11.
航空生物力学   总被引:1,自引:0,他引:1  
飞行员在飞行中会面临各种复杂载荷,这些复杂载荷会给飞行员肌骨、血液循环等系统产生复杂生理影响,从而导致飞行员损伤。生物力学主要研究生物医学中的力学问题及力的生物学效应。航空生物力学是研究人体在航空动力环境中生理变化规律及其防护措施的学科,其主要研究内容包括:冲击载荷对人体的损伤及其防护;持续性载荷对人体的生理影响及其防护或对抗;振动与噪声对人体的生理影响及其防护等。  相似文献   

12.
The link between mechanics and biology in the generation and the adaptation of bone has been studied for more than a century in the context of skeletal development and fracture healing. However, the interplay between mechanics and biology in de novo generation of bone in postnatal defects as well as healing of morcellized bone graft or massive cortical bone autografts is less well understood. To address this, here we integrate insights from our previously published studies describing the mechanobiology on both de novo bone generation and graft healing in a common ovine femoral defect model. Studying these effects in a common experimental model provides a unique opportunity to elucidate factors conducive to harnessing the regenerative power of the periosteum, and ultimately, to provide mechanistic insights into the multiscale mechanobiology of bone generation, remodeling and adaptation. Taken together, the studies indicate that, as long as adequate, directional transport of cells and molecules can be insured (e.g. with periosteum in situ or a delivery device), biological factors intrinsic to the periosteum suffice to bridge critical sized bone defects, even in the absence of a patent blood supply. Furthermore, mechanical stimuli are crucial for the success of periosteal bone generation and bone graft healing. Interestingly, areas of highest periosteal strain around defects correlate with greatest amounts albeit not greatest mineralization of newly generated bone. This may indicate a role for convection enhanced transport of cells and molecules in modulation of tissue generation by pluripotent cells that ingress into the defect center, away from the periosteum and toward the surface of the intramedullary nail that fills the medullary cavity. These insights bring us much closer to understanding the mechanobiological environment and stimuli that stimulate the proliferation and differentiation of periosteum-derived progenitor cells and ultimately drive the generation of new bone tissue. Furthermore, these insights provide a foundation to create virtual predictive computational models of bone mechanophysiology, to develop cell seeding protocols for scale up and manufacture of engineered tissues, to optimize surgical procedures, and to develop post-surgical therapies with the ultimate goal of achieving the best possible healing outcomes for treatment and/or reconstruction of postnatal bone defects.  相似文献   

13.
在脉搏血压和血流作用下血管承受的弹性应力、黏性剪切应力以及管壁基质的力学特性构成血管细胞的在体力学微环境,这些力学刺激参与调控管壁细胞的生物学响应,诱导血管组织的重建和病变。虽然目前有大量关于血管力学生物学的实验研究,但是体外实验中施加的力学刺激与血管生理和病理条件的定量相关性仍缺乏必要的讨论。总结血管细胞在体力学微环境的量化评估方法,聚焦生理位置和老化对管壁力学行为的影响。探讨细胞力学微环境的生理和病理特性,以及对当前血管力学生物学研究的启示。  相似文献   

14.
Vascular tissue engineering aims to regenerate blood vessels to replace diseased arteries for cardiovascular patients. With the scaffold-based approach, cells are seeded on a scaffold showing specific properties and are expected to proliferate and self-organize into a functional vascular tissue. Bioreactors can significantly contribute to this objective by providing a suitable environment for the maturation of the tissue engineered blood vessel. It is recognized from the mechanotransduction principles that mechanical stimuli can influence the protein synthesis of the extra-cellular matrix thus leading to maturation and organization of the tissues. Up to date, no bioreactor is especially conceived to take advantage of the mechanobiology and optimize the construct maturation through an advanced control strategy. In this review, experimental strategies in the field of vascular tissue engineering are detailed, and a new approach inspired by fetal development, mechanobiology and optimal control paradigms is proposed. In this new approach, the culture conditions (i.e. flow, circumferential strain, pressure frequency, and others) are supposed to dynamically evolve to match the maturity of vascular constructs and maximize the efficiency of the regeneration process. Moreover, this approach allows the investigation of the mechanisms of growth, remodeling and mechanotransduction during the culture.  相似文献   

15.
骨适应性力学环境中,成骨细胞作为骨形成的主要功能细胞,也是感应力学载荷的主要细胞之一。目前随着科技的发展,越来越多的航天员、飞行员等暴露于高重力环境中。为了更好了解和认识高重力下成骨细胞的力学生物学响应,综述高重力下成骨细胞形态及增殖、基因表达、细胞因子分泌以及信号转导通道等力学生物学方面的研究进展,为高重力环境下骨组织的力学生物学研究提供思路和准备。  相似文献   

16.
This article contains the collective views expressed at the second session of the workshop "Tissue Engineering--The Next Generation,' which was devoted to the tools of tissue engineering: scaffolds, bioreactors, and molecular and physical signaling. Lisa E. Freed and Farshid Guilak discussed the integrated use of scaffolds and bioreactors as tools to accelerate and control tissue regeneration, in the context of engineering mechanically functional cartilage and cardiac muscle. Edward Guo focused on the opportunities that tissue engineering generates for studies of mechanobiology and on the need for tissue engineers to learn about mechanical forces during tissue and organ genesis. Martha L. Gray focused on the potential of biomedical imaging for noninvasive monitoring of engineered tissues and on the opportunities biomedical imaging can generate for the development of new markers. Robert Tranquillo reviewed the approach to tissue engineering of a spectrum of avascular habitually loaded tissues- blood vessels, heart valves, ligaments, tendons, cartilage, and skin. Jeffrey W. Holmes offered the perspective of a "reverse paradigm'--the use of tissue constructs in quantitative studies of cell-matrix interactions, cell mechanics, matrix mechanics, and mechanobiology. Milica Radisic discussed biomimetic design of tissue-engineering systems, on the example of synchronously contractile cardiac muscle. Michael V. Sefton proposed a new, simple approach to the vascularization of engineered tissues. This session stressed the need for advanced scaffolds, bioreactors, and imaging technologies and offered many enlightening examples on how these advanced tools can be utilized for functional tissue engineering and basic research in medicine and biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号