首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autoimmunity is frequently observed in patients with primary immune deficiency disorders. Monogenic autoimmune diseases include a group of disorders with characteristic autoimmunity and immune deficiency for which single gene defects have been identified. Currently recognized monogenic autoimmune diseases include autoimmune polyendocrinopathy candidiasis and ectodermal dystrophy, immunodysregulation polyendocrinopathy enteropathy and X-linked inheritance syndrome, autoimmune lymphoproliferative syndrome, and interleukin-2 receptor alpha-chain deficiency. These diseases offer important insights into the mechanisms of central and peripheral immune tolerance and the pathogenesis of defects in these mechanisms.  相似文献   

2.
Background: Polyautoimmunity is defined as the presence of more than one autoimmune disorder in a single patient. Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) deficiency is one of the monogenic causes of polyautoimmunity. The aim of this study was to report the characteristics of polyautoimmunity in patients with LRBA deficiency.

Methods: A total of 14 LRBA deficiency patients with confirmed autoimmunity were enrolled in this study. For those patients with polyautoimmunity, demographic information, clinical records, laboratory, and molecular data were collected. We also compared our results with the currently reported patients with LRBA deficiency associated with polyautoimmunity.

Results: In 64.2% (9 out of 14) of patients, autoimmunity presented as polyautoimmunity. In these patients, autoimmune cytopenias were the most frequent complication, observed in seven patients. Three patients presented with four different types of autoimmune conditions. The review of the literature showed that 41 of 72 reported LRBA deficient patients (74.5%) had also polyautoimmunity, with a wide spectrum of autoimmune diseases described. Hematopoietic stem cell transplantation is increasingly used as the treatment for patients with severe polyautoimmunity associated to LRBA deficiency.

Conclusions: Mutation in LRBA gene is one of the causes of monogenic polyautoimmunity. Awareness of this association is important in order to make an early diagnosis and prompt treatment.  相似文献   


3.
Primary immunodeficiency diseases (PID) are a genetically heterogeneous group of more than 270 disorders that affect distinct components of both humoral and cellular arms of the immune system. Primary T cell immunodeficiencies affect subjects at the early age of life. In most cases, T-cell PIDs become apparent as combined T- and B-cell deficiencies. Patients with T-cell PID are prone to life-threatening infections. On the other hand, non-infectious complications such as lymphoproliferative diseases, cancers and autoimmunity seem to be associated with the primary T-cell immunodeficiencies. Autoimmune disorders of all kinds (organ specific or systemic ones) could be subjected to this class of PIDs; however, the most frequent autoimmune disorders are immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA). In this review, we discuss the proposed mechanisms of autoimmunity and review the literature reported on autoimmune disorder in each type of primary T-cell immunodeficiencies.  相似文献   

4.
5.
Primary immunodeficiency disorders (PIDs) constitute a heterogeneous group of genetic disorders caused by defects in immunity, leading to recurrent infections, autoimmunity, lymphoproliferation and malignancies. Early diagnosis of PIDs is crucial for improving the quality of life in patients with PIDs while a delay in diagnosis, or inadequate treatment, results in an increased mortality and morbidity in affected individuals. Although most cases of PIDs present in children with recurrent and/or severe acute infections, some of the primary immune disorders are diagnosed during adulthood. Some common clues, both in children and adults, help physicians to diagnose PIDs; however, there are some specific clues to the diagnosis of PIDs for each group. This article reviews the important differences in the diagnostic spectrum of PIDs in adults versus children.  相似文献   

6.
Primary immunodeficiency disorders (PIDs) are rare inborn errors of the immune system. Patients with PIDs are unique models that exemplify the functional and phenotypic consequences of various immune defects underlying infections, autoimmunity, lymphoproliferation, allergy and cancer. Over 150 PID syndromes were characterized in the past 60 years, with an ever growing list of new entities being discovered. Because of their rarity, multi-center collaboration for pooled data analysis and molecular studies is important to gain meaningful insights into the phenotypic and genetic diversities of PIDs. In this article, we summarize our research findings on PIDs in Chinese population in the past 20 years. Close collaboration among various immunology centers, cross-referrals and systematic data analysis constitute the foundation for research on PIDs. Future directions include establishment of a national PID registry, raising awareness of PIDs and securing sufficient resources for patient care and scientific research.  相似文献   

7.
To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.  相似文献   

8.
BACKGROUND: Primary Immunodeficiencies (PIDs) represent unique opportunities to understand the operation of the human immune system. Accordingly, PIDs associated with autoimmune manifestations provide insights into the pathophysiology of autoimmunity as well as into the genetics of autoimmune diseases (AID). Epidemiological data show that there are PIDs systematically associated with AID, such as immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), Omenn syndrome, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), autoimmune lymphoproliferative syndrome (ALPS), and C1q deficiency, while strong associations are seen with a handful of other deficits. CONCLUSION: We interpret such stringent disease associations, together with a wealth of observations in experimental systems, as indicating first of all that natural tolerance to body components is an active, dominant process involving many of the components that ensure responsiveness, rather than, as previously believed, the result of the mere purge of autoreactivities. More precisely, it seems that deficits of Treg cell development, functions, numbers, and T cell receptor repertoire are among the main factors for autoimmunity pathogenesis in many (if not all) PIDs most frequently presenting with autoimmune features. Clearly, other pathophysiological mechanisms are also involved in autoimmunity, but these seem less critical in the process of self-tolerance. Comparing the clinical picture of IPEX cases with those, much less severe, of ALPS or APECED, provides some assessment of the relative importance of each set of mechanisms.  相似文献   

9.
Primary immunodeficiencies (PIDs) are rare monogenic inborn errors of immunity that result in impairment of functions of the human immune system. PIDs have a broad phenotype with increased morbidity and mortality, and treatment choices are often complex. With increased accessibility of next‐generation sequencing (NGS), the rate of discovery of genetic causes for PID has increased exponentially. Identification of an underlying monogenic diagnosis provides important clinical benefits for patients with the potential to alter treatments, facilitate genetic counselling, and pre‐implantation diagnostics. We investigated a NGS PID panel of 242 genes within clinical care across a range of PID phenotypes. We also evaluated Phenomizer to predict causal genes from human phenotype ontology (HPO) terms. Twenty‐seven participants were recruited, and a total of 15 reportable variants were identified in 48% (13/27) of the participants. The panel results had implications for treatment in 37% (10/27) of participants. Phenomizer identified the genes harbouring variants from HPO terms in 33% (9/27) of participants. This study shows the clinical efficacy that genetic testing has in the care of PID. However, it also highlights some of the disadvantages of gene panels in the rapidly moving field of PID genomics and current challenges in HPO term assignment for PID.  相似文献   

10.
Mutations of forkhead box p3 (FOXP3), the master gene for naturally occurring regulatory T cells (nTregs), are responsible for the impaired function of nTregs, resulting in an autoimmune disease known as the immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. The relevance of other peripheral tolerance mechanisms, such as the presence and function of type 1 regulatory T (Tr1) cells, the major adaptive IL-10-producing Treg subset, in patients with IPEX syndrome remains to be clarified. FOXP3(mutated) Tr1-polarized cells, differentiated in vitro from CD4(+) T cells of four IPEX patients, were enriched in IL-10(+) IL-4(-) IFN-γ(+) T cells, a cytokine production profile specific for Tr1 cells, and expressed low levels of FOXP3 and high levels of Granzyme-B. IPEX Tr1 cells were hypoproliferative and suppressive, thus indicating that FOXP3 mutations did not impair their function. Furthermore, we isolated Tr1 cell clones from the peripheral blood of one FOXP3(null) patient, demonstrating that Tr1 cells are present in vivo and they can be expanded in vitro in the absence of WT FOXP3. Overall, our results (i) show that functional Tr1 cells differentiate independently of FOXP3, (ii) confirm that human Tr1 and nTregs are distinct T-cell lineages, and (iii) suggest that under favorable conditions Tr1 cells could exert regulatory functions in IPEX patients.  相似文献   

11.
In the last decade, the paradigm of primary immunodeficiencies (PIDs) as rare recessive familial diseases that lead to broad, severe, and early-onset immunological defects has shifted toward collectively more common, but sporadic autosomal dominantly inherited isolated defects in the immune response. Patients with PIDs constitute a formidable area of research to study the genetics and the molecular mechanisms of complex immunological pathways. A significant subset of PIDs affect the innate immune response, which is a crucial initial host defense mechanism equipped with pattern-recognition receptors. These receptors recognize pathogen- and damage-associated molecular patterns in both the extracellular and intracellular space. In this review, we will focus on primary immunodeficiencies caused by genetic defects in cytosolic pattern-recognition receptor pathways. We discuss these PIDs organized according to their mutational mechanisms and consequences for the innate host response. The advanced understanding of these pathways obtained by the study of PIDs creates the opportunity for the development of new host-directed treatment strategies.  相似文献   

12.
Fopx3+ Treg safeguard against autoimmune diseases and immune pathology. The extrathymic conversion of naïve T cells into Foxp3+ regulatory T cells can be achieved in vivo by the delivery of strong-agonist ligands under subimmunogenic conditions. Tolerogenic vaccination with strong-agonist mimetopes of self-antigen to promote self-antigen specific tolerance may represent the most specific and safest means of preventing autoimmunity. This review discusses the requirements for induction of dominant tolerance exerted by Foxp3+ Tregs in autoimmunity with special emphasis on their impact to interfere with T1D. The future goals are the understanding of self-non-self discrimination at the cellular and molecular level, which should then enable investigators to develop clinical vaccination protocols that specifically interfere with unwanted immune responses.  相似文献   

13.
The diagnosis of common variable immunodeficiency (CVID) is reserved for patients who suffer from undefined B cell dysfunction. Division of the CVID population into subgroups enables research for underlying disease causes. We studied clinical features and lymphocyte characteristics in 38 children with CVID and compared them to 30 children with less severe antibody deficiencies (e.g. specific antibody deficiency combined with IgG subclass deficiency) and with 65 pediatric controls. Most pediatric immune phenotypes were comparable to adult CVID phenotypes, including a selective increase in newly formed B cells and a decrease in memory B cells and CD4+ T cells. Eighteen percent of pediatric patients had a mutation in the TNFRSF13B gene, which requires further investigation. Finally, pediatric patients with decreased class-switched memory B cells had significantly more complications.  相似文献   

14.
Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) protein was initially described as a monogenetic cause for common variable immune deficiency, a syndrome characterized by low levels of B cells, defects in memory B cell differentiation and hypogammaglobulinaemia. LRBA was identified as an LPS up-regulated gene in B cells, macrophages and T cells. LRBA weighs 320 kDa and has 2863 amino acids. Its sequence contains multiple domains, suggesting that LRBA can act as a scaffolding protein. It contains two putative binding sites for cAMP-dependent kinase (PKA) regulatory subunits, suggesting this protein can act as A-kinase anchor protein (AKAP); however, physical interactions involving LRBA and PKA have not been demonstrated to date, and functional roles for such interactions are unexplored. In this work, we investigated physical interactions involving LRBA with regulatory subunits of PKA in human B cell lines and primary human B cells. PKA is a holoenzyme composed of two regulatory subunits, which can be RIα, RIβ, RIIα or RIIβ, and two catalytic subunits, Cα or Cβ. We co-immunoprecipitated LRBA using Ramos B cell lymphoma cells and observed that LRBA interacts with RIIβ. Interestingly, St-Ht31, an inhibitory peptide that disrupts AKAP interactions with regulatory subunits, reduced the amount of interacting protein. Furthermore, in primary human B cells, LRBA was induced after CD40L and IL-4 stimulation, and under such activation, we found that LRBA interacts with RIIα and RIIβ, suggesting that LRBA acts as an AKAP and binds RII subunits. Interestingly, we also identified that LRBA interacts with activation-induced cytidine deaminase in primary B cells, suggesting that it is involved in B cell function.  相似文献   

15.
Primary immunodeficiency diseases (PIDs) consist of a genetically heterogeneous group of immune disorders that affect distinct elements of the immune system. PID patients are more prone to infections and non‐infectious complications, particularly autoimmunity. The concomitance of immunodeficiency and autoimmunity appears to be paradoxical and leads to difficulty in the management of autoimmune complications in PID patients. Therefore, management of autoimmunity in patients with PID requires special considerations because dysregulations and dysfunctions of the immune system along with persistent inflammation impair the process of diagnosis and treatment.  相似文献   

16.
Polymorphisms in TACI, a BAFF family cytokine receptor, are linked to diverse human immune disorders including common variable immunodeficiency (CVID) and systemic lupus erythematosus (SLE). Functional studies of individual variants show modest impacts on surface TACI expression and/or downstream signal transduction, indicating that relatively subtle variation in TACI activity can impact human B-cell biology. However, significant complexity underlies TACI biology, including both positive and negative regulation of physiologic and pathogenic B-cell responses. To model these contradictory events, we compared the functional impact of TACI deletion on separate models of murine SLE driven by T cell-independent and -dependent breaks in B-cell tolerance. First, we studied whether reduced surface TACI expression was sufficient to protect against progressive BAFF-mediated systemic autoimmunity. Strikingly, despite a relatively modest impact on surface TACI levels, TACI haploinsufficiency markedly reduced pathogenic RNA-associated autoantibody titers and conferred long-term protection from BAFF-driven lupus nephritis. In contrast, B cell-intrinsic TACI deletion exerted a limited impact of autoantibody generation in murine lupus characterized by spontaneous germinal center formation and T cell-dependent humoral autoimmunity. Together, these combined data provide new insights into TACI biology and highlight how TACI signals must be tightly regulated during protective and pathogenic B-cell responses.  相似文献   

17.

Background

Primary Immunodeficiencies (PIDs) represent unique opportunities to understand the operation of the human immune system. Accordingly, PIDs associated with autoimmune manifestations provide insights into the pathophysiology of autoimmunity as well as into the genetics of autoimmune diseases (AID). Epidemiological data show that there are PIDs systematically associated with AID, such as immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), Omenn syndrome, autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED), autoimmune lymphoproliferative syndrome (ALPS), and C1q deficiency, while strong associations are seen with a handful of other deficits.

Conclusion

We interpret such stringent disease associations, together with a wealth of observations in experimental systems, as indicating first of all that natural tolerance to body components is an active, dominant process involving many of the components that ensure responsiveness, rather than, as previously believed, the result of the mere purge of autoreactivities. More precisely, it seems that deficits of Treg cell development, functions, numbers, and T cell receptor repertoire are among the main factors for autoimmunity pathogenesis in many (if not all) PIDs most frequently presenting with autoimmune features. Clearly, other pathophysiological mechanisms are also involved in autoimmunity, but these seem less critical in the process of self-tolerance. Comparing the clinical picture of IPEX cases with those, much less severe, of ALPS or APECED, provides some assessment of the relative importance of each set of mechanisms.
  相似文献   

18.
Recently, several studies have investigated a number of rare monogenic autoimmune disorders, in which the causative genetic defects were identified and found to affect the development or function of regulatory T cells (Tregs). The studies of these disorders have facilitated a deeper understanding of the mechanisms involved in immune regulation and tolerance. Furthermore, these studies have highlighted the importance of Tregs in maintaining homeostasis at the mucosal interface between the host and microbiome. Here, we offer our perspective on these monogenic autoimmune disorders, highlighting their overlapping clinical features with inflammatory bowel disease.  相似文献   

19.
Maintenance of FOXP3 protein expression is crucial for differentiation and maturation of regulatory T (Treg) cells, which play important roles in immune homeostasis and immune tolerance. We demonstrate here that PDCD5 interacts with FOXP3, increases acetylation of FOXP3 in synergy with Tip60 and enhances the repressive function of FOXP3. In PDCD5 transgenic (PDCD5tg) mice, overexpression of PDCD5 enhanced the level of FOXP3 protein and percentage of CD4+CD25+FOXP3+ cells. Naïve CD4+ T cells from PDCD5tg mice were more sensitive to TGF-β-induced Treg polarization and expansion. These induced Tregs retained normal suppressive function in vitro. Severity of experimentally-induced autoimmune encephalomyelitis (EAE) in PDCD5tg mice was significantly reduced relative to that of wild-type mice. The beneficial effect of PDCD5 likely resulted from increases of Treg cell frequency, accompanied by a reduction of the predominant pathogenic Th17/Th1 response. Activation-induced cell death enhanced by PDCD5 was also linked to this process. This is the first report revealing that PDCD5 activity in T cells suppresses autoimmunity by modulating Tregs. This study suggests that PDCD5 serves as a guardian of immunological functions and that the PDCD5-FOXP3-Treg axis may be a therapeutic target for autoimmunity.  相似文献   

20.
Regulation of the immune response by stress-activated protein kinases   总被引:1,自引:1,他引:0  
Summary:  Activation of immune cells to mediate an immune response is often triggered by potential 'danger' or 'stress' stimuli that the organism receives. Within the mitogen-activated protein kinases (MAPKs) family, the stress-activated protein kinase (SAPK) group was defined as group of kinases that activated by stimuli that cause cell stress. In the immune cells, SAPKs are activated by antigen receptors (B- or T-cell receptors), Toll-like receptors, cytokine receptors, and physical–chemical changes in the environment among other stimuli. The SAPKs are established to be important mediators of intracellular signaling during adaptive and innate immune responses. Here we summarize what is currently known about the role of two sub-groups of SAPKs – c-Jun NH2-terminal kinase and p38 MAPK-in the function of specific components of the immune system and the overall contribution to the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号