首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the biomechanical properties of newly formed cartilaginous tissue synthesized from isolated chondrocytes. Cartilage from articular joints of lambs was either digested in collagenase to isolated chondrocytes or cut into discs that were devitalized by multiple freeze-thaw cycles. Isolated cells were incubated in suspension culture in the presence of devitalized cartilage matrix for 3 weeks. Multiple chondrocyte/matrix constructs were assembled with fibrin glue and implanted subcutaneously in nude mice for up to 6 weeks. Testing methods were devised to quantify integration of cartilage pieces and mechanical properties of constructs. These studies showed monotonic increase with time in tensile strength, fracture strain, fracture energy, and tensile modulus to values 5-10% of normal articular cartilage by 6 weeks in vivo. Histological analysis indicated that chondrocytes grown on dead cartilage matrix produced new matrix that integrated individual cartilage pieces with mechanically functional tissue.  相似文献   

2.
Adult chondrocytes are less chondrogenic than immature cells, yet it is likely that autologous cells from adult patients will be used clinically for cartilage engineering. The aim of this study was to compare the postexpansion chondrogenic potential of adult nasal and articular chondrocytes. Bovine or human chondrocytes were expanded in monolayer culture, seeded onto polyglycolic acid (PGA) scaffolds, and cultured for 40 days. Engineered cartilage constructs were processed for histological and quantitative analysis of the extracellular matrix and mRNA. Some engineered constructs were implanted in athymic mice for up to six additional weeks before analysis. Using adult bovine tissues as a cell source, nasal chondrocytes generated a matrix with significantly higher fractions of collagen type II and glycosaminoglycans as compared with articular chondrocytes. Human adult nasal chondrocytes proliferated approximately four times faster than human articular chondrocytes in monolayer culture, and had a markedly higher chondrogenic capacity, as assessed by the mRNA and protein analysis of in vitro-engineered constructs. Cartilage engineered from human nasal cells survived and grew during 6 weeks of implantation in vivo whereas articular cartilage constructs failed to survive. In conclusion, for adult patients nasal septum chondrocytes are a better cell source than articular chondrocytes for the in vitro engineering of autologous cartilage grafts. It remains to be established whether cartilage engineered from nasal cells can function effectively when implanted at an articular site.  相似文献   

3.
Kim M  Kim SE  Kang SS  Kim YH  Tae G 《Biomaterials》2011,32(31):7883-7896
Partial-thickness cartilage defects, with no subchondral bone injury, do not repair spontaneously, thus there is no clinically effective treatment for these lesions. Although the autologous chondrocyte transplantation (ACT) is one of the promising approaches for cartilage repair, it requires in vitro cell expansion to get sufficient cells, but chondrocytes lose their chondrogenic phenotype during expansion by monolayer culture, leading to de-differentiation. In this study, a heparin-based hydrogel was evaluated and optimized to induce cartilage regeneration with de-differentiated chondrocytes. First, re-differentiation of de-differentiated chondrocytes encapsulated in heparin-based hydrogels was characterized in vitro with various polymer concentrations (from 3 to 20 wt.%). Even under a normal cell culture condition (no growth factors or chondrogenic components), efficient re-differentiation of cells was observed with the optimum at 10 wt.% hydrogel, showing the complete re-differentiation within a week. Efficient re-differentiation and cartilage formation of de-differentiated cell/hydrogel construct were also confirmed in vivo by subcutaneous implantation on the back of nude mice. Finally, excellent cartilage regeneration and good integration with surrounding, similar to natural cartilage, was also observed by delivering de-differentiated chondrocytes using the heparin-based hydrogel in partial-thickness defects of rabbit knees whereas no healing was observed for the control defects. These results demonstrate that the heparin-based hydrogel is very efficient for re-differentiation of expanded chondrocytes and cartilage regeneration without using any exogenous inducing factors, thus it could serve as an injectable cell-carrier and scaffold for cartilage repair. Excellent chondrogenic nature of the heparin-based hydrogel might be associated with the hydrogel characteristic that can secure endogenous growth factors secreted from chondrocytes, which then can promote the chondrogenesis, as suggested by the detection of TGF-β1 in both in vitro and in vivo cell/hydrogel constructs.  相似文献   

4.
The objective of the study was to evaluate the growth-promoting activity of human platelet supernanant on primary chondrocytes in comparison with fetal calf serum (FCS) supplemented cell culture medium. Furthermore, the differentiation potential of platelet supernatant was determined in three-dimensional artificial cartilage tissues of bovine articular chondrocytes. Proliferation of articular and nasal septal chondrocytes was assayed by incorporation of BrdU upon stimulation with ten different batches of human platelet supernatant. On bovine articular chondrocytes, all these batches were at least as growth-promoting as FCS. On nasal septal chondrocytes, nine out of ten batches revealed increased or equivalent mitogenic stimulation compared with medium supplemented with FCS. Three-dimensional culture and subsequent histological analysis of matrix formation were used to determine the differentiation properties of platelet supernatant on articular chondrocytes. Human platelet supernatant failed to induce the deposition of typical cartilage matrix components, whereas differentiation and matrix formation were apparent upon cultivation of articular chondrocytes with FCS. Proliferation assays demonstrated that human platelet supernatant stimulates growth of articular and nasal septal chondrocytes; however, platelet supernatant failed to stimulate articular chondrocytes to redifferentiate in three-dimensional chondrocyte cultures. Therefore platelet lysate may be suitable for chondrocyte expansion, but not for maturation of tissue-engineered cartilage.  相似文献   

5.
6.
Tissue engineering of articular cartilage remains an ongoing challenge. Since tissue regeneration recapitulates ontogenetic processes the growth plate can be regarded as an innovative model to target suitable signalling molecules and growth factors for the tissue engineering of cartilage. In the present study we analysed the expression of cyclooxygenases (COX) in a short-term chondrocyte culture in gelatin-based scaffolds and in articular cartilage of rats and compared it with that in the growth plate. Our results demonstrate the strong cellular expression of COX-1 but only a focal weak expression of COX-2 in the seeded scaffolds. Articular cartilage of rats expresses homogeneously COX-1 and COX-2 with the exception of the apical cell layer. Our findings indicate a functional role of COX in the metabolism of articular chondrocytes. The expression of COX in articular cartilage and in the seeded scaffolds opens interesting perspectives to improve the proliferation and differentiation of chondrocytes in scaffold materials by addition of specific receptor ligands of the COX system.  相似文献   

7.
The nude mouse model is an established method to cultivate and investigate tissue engineered cartilage analogues under in vivo conditions. One limitation of this common approach is the lack of appropriate surrounding articular tissues. Thus the bonding capacity of cartilage repair tissue cannot be evaluated. Widely applied surgical techniques in cartilage repair such as conventional and three-dimensional autologous chondrocyte implantation (ACI) based on a collagen gel matrix cannot be included into nude mouse studies, since their application require a contained defect. The aim of this study is to apply an organ culture defect model for the in vivo cultivation of different cell-matrix-constructs.Cartilage defects were created on osteochondral specimens which had been harvested from 10 human knee joints during total knee replacement. Autologous chondrocytes were isolated from the cartilage samples and cultivated in monolayer until passage 2. On each osteochondral block defects were treated either by conventional ACI or a collagen gel seeded with autologous chondrocytes, including a defect left empty as a control. The samples were implanted into the subcutaneous pouches of nude mice and cultivated for six weeks. After retrieval, the specimens were examined histologically, immunohistochemically and by cell morphology quantification.In both, ACI and collagen gel based defect treatment, a repair tissue was formed, which filled the defect and bonded to the adjacent tissues. The repair tissue was immature with low production of collagen type II. In both groups redifferentiation of chondrocytes remained incomplete. Different appearances of interface zones between the repair tissue and the adjacent cartilage were found.The presented contained defect organ culture model offers the possibility to directly compare different types of clinically applied biologic cartilage repair techniques using human articular tissues in a nude mouse model.  相似文献   

8.
Articular chondrocytes undergo a rapid change in phenotype and gene expression, termed dedifferentiation, when isolated from cartilage tissue and cultured on tissue culture plastic. On the other hand, "redifferentiation" of articular chondrocytes in suspension culture is characterized by decreased cellular proliferation and the reinitiation of synthesis of hyaline articular cartilage extracellular matrix molecules. The molecular triggers for these events have yet to be defined. Subtracted cDNA libraries representing genes involved in the early events of adult human articular chondrocyte redifferentiation were generated from human articular chondrocytes that were first cultured in monolayer, and subsequently transferred to suspension culture at 10(6) cells/ml for redifferentiation. Differential regulation of genes involved in cellular organization, nuclear structure, cellular growth regulation, and extracellular matrix deposition and remodeling were observed within 48 hr of this transfer. Many of these genes had not been previously identified in the chondrocyte differentiation pathway and a number of the isolated cDNAs did not have homologies to sequences in the public data banks. Genes involved in IL-6 signal transduction including acute phase response factor (APRF), Mn superoxide dismutase, and IL-6 itself were up-regulated in suspension culture. Membrane glycoprotein gp130, a component of the IL-6 receptor, was down-regulated. Other genes involved in cell polarity, cell adherence, apoptosis, and possibly TGF-beta signaling were differentially regulated. The differential regulation of the cytokine connective tissue growth factor (CTGF) during the early stages of articular chondrocyte redifferentiation, decreasing within 48 hours of transfer to suspension culture, was particularly interesting given its reported role in the stimulation of cellular proliferation. CTGF was highly expressed in proliferative monolayer culture, and then greatly reduced by redifferentiation in standard high-density suspension culture. When articular chondrocytes were seeded in suspension at low-density (10(4) cells/ml), however, high levels of CTGF were observed along with increased levels of mature articular cartilage extracellular matrix protein RNAs, such as type II collagen and aggrecan. Although the role of CTGF in articular cartilage biology remains to be elucidated, the results described here demonstrate the potential utility of subtractive hybridization in understanding the process of articular chondrocyte redifferentiation.  相似文献   

9.
For cartilage engineering a variety of biomaterials were applied for 3-dimensional chondrocyte embedding and transplantation. In order to find a suitable carrier for the in vitro culture of chondrocytes and the subsequent preparation of cartilage transplants we investigated the feasibility of a combination of the well-established matrices fibrin and alginate. In this work human articular chondrocytes were embedded and cultured either in alginate, a mixture of alginate and fibrin, or in a fibrin gel after the extraction of the alginate component (porous fibrin gel) over a period of 30 days. Histomorphological analysis, electron microscopy, and immunohistochemistry were performed to evaluate the phenotypic changes of the chondrocytes, as well as the quality of the newly formed cartilaginous matrix. Our experiments showed that a mixture of 0.6% alginate with 4.5% fibrin promoted sufficient chondrocyte proliferation and differentiation, resulting in the formation of a specific cartilage matrix. Alginate served as a temporary supportive matrix component during in vitro culture and can be easily removed prior to transplantation. The presented tissue engineering method on the basis of a mixed alginate-fibrin carrier offers the opportunity to create stable cartilage transplants for reconstructive surgery.  相似文献   

10.
The clinical need for improved human autologous chondrocyte transplantation has motivated the use of different biomaterials, which are aimed at fixing the cells in the defect area and permit their proliferation and differentiation. The maintenance of the original phenotype by isolated chondrocytes grown in vitro is an important requisite for their use in repairing damaged articular cartilage. The methods to verify the expression of cartilage-specific molecules usually involve destructive procedures to recover the cells from the scaffolds for tests. The aim of our study was to find a soluble marker able to attest the occurrence of a differentiation process by chondrocytes grown onto a biomaterial used for cell transplantation. We turned our attention to cathepsin B which is known to be abnormally synthesized in de-differentiated chondrocytes and scarcely produced in the differentiated ones. The production of cathepsin B by human articular chondrocytes expanded in vitro and then grown onto a hyaluronan-based polymer derivative (Hyaff-11) three-dimensional scaffold was evaluated with a specific enzyme-immunoassay at different experimental times together with the expression of mRNA by real-time PCR. We showed that cathepsin B, which is abundantly produced by chondrocytes grown in a monolayer culture, decreases significantly after the cells are seeded onto the scaffold, giving further evidence of a re-differentiation process. This result suggests cathepsin B a practical soluble marker to evaluate the "good" quality of transplantable constructs.  相似文献   

11.
Matrix-associated autologous chondrocyte transplantation (MACT) is a tissue-engineered approach for the treatment of cartilage defects and combines autologous chondrocytes seeded on biomaterials. The objective of the study is the analysis of growth and differentiation behaviour of human articular chondrocytes grown on three different matrices used for MACT. Human articular chondrocytes were kept in monolayer culture for 42 days and then seeded on matrices consisting of either collagen type I/III, hyaluronan, or gelatine. During the culture time of 4 weeks the constructs were analyzed weekly. Morphological criteria were studied by scanning and transmission electron microscopy. The expression of the main type collagens was analyzed by real-time PCR. The collagen type I/III matrix supported a differentiation that closely resembled the tissue organisation of native cartilage, but cell number and type II collagen synthesis were low and differentiation occurred rather late in the cultivation period. The hyaluronan matrix and the gelatine-based matrix supported a rather rapid differentiation, with a high number of cells and a relatively high amount of type II collagen, but there was no spatial assembly that mimicked native cartilage. These facts indicate that the nature of the matrix is of great influence in the differentiation behaviour of dedifferentiated chondrocytes.  相似文献   

12.
13.
14.
以羊膜为载体培养游离软骨细胞修复兔关节软骨缺损   总被引:2,自引:0,他引:2  
目的:探讨膜结构为载体培养游离软骨细胞修复软骨缺损的可行性。方法:以兔羊膜为载体将体外培养的同种异体游离软骨细胞植于兔左侧股骨外踝软骨缺损区,分别于4、8、12周处死动物,整个膝关节被解剖,进行大体观察、组织学评价、电镜观察及SRY基因性别鉴定,并以兔体的右膝关节做为对照。结果:术后4、8、12周大体、组织学、电镜观察显示软骨缺损区新生了透明软骨,SRY基因性别鉴定证明新生的软骨来源于移植的同种异体软骨细胞;而对照组则仅见纤维组织样的修复组织。结论:以羊膜为载体进行同种异体软骨细胞移植能够修复关节软骨缺损。  相似文献   

15.
Thermoreversible hydrogel scaffolds for articular cartilage engineering   总被引:2,自引:0,他引:2  
Articular cartilage has limited potential for repair. Current clinical treatments for articular cartilage damage often result in fibrocartilage and are associated with joint pain and stiffness. To address these concerns, researchers have turned to the engineering of cartilage grafts. Tissue engineering, an emerging field for the functional restoration of articular cartilage and other tissues, is based on the utilization of morphogens, scaffolds, and responding progenitor/stem cells. Because articular cartilage is a water-laden tissue and contains within its matrix hydrophilic proteoglycans, an engineered cartilage graft may be based on synthetic hydrogels to mimic these properties. To this end, we have developed a polymer system based on the hydrophilic copolymer poly(propylene fumarate-co-ethylene glycol) [P(PF-co-EG)]. Solutions of this polymer are liquid below 25 degrees C and gel above 35 degrees C, allowing an aqueous solution containing cells at room temperature to form a hydrogel with encapsulated cells at physiological body temperature. The objective of this work was to determine the effects of the hydrogel components on the phenotype of encapsulated chondrocytes. Bovine articular chondrocytes were used as an experimental model. Results demonstrated that the components required for hydrogel fabrication did not significantly reduce the proteoglycan synthesis of chondrocytes, a phenotypic marker of chondrocyte function. In addition, chondrocyte viability, proteoglycan synthesis, and type II collagen synthesis within P(PF-co-EG) hydrogels were investigated. The addition of bone morphogenetic protein-7 increased chondrocyte proliferation with the P(PF-co-EG) hydrogels, but did not increase proteoglycan synthesis by the chondrocytes. These results indicate that the temperature-responsive P(PF-co-EG) hydrogels are suitable for chondrocyte delivery for articular cartilage repair.  相似文献   

16.
In this study, we prepared a tri-copolymer porous matrices by natural polymer, collagen (Col), Chitosan (Chi) and Chondroitin (CS). Rabbit articular chondrocytes were isolated from the shoulder articular joints of a rabbit, seeded in Col-Chi-CS scaffold, and implanted subcutaneously in the dorsum of athymic nude mice to tissue engineer articular cartilage in vivo. In vitro studies show that Chondrocytes adhered to the scaffold, where they proliferated and secreted extracellular matrices with time, filling the space within the scaffold. The results of hematoxylin and eosin staining scanning electron microscopy revealed that most of the chondrocytes maintained their typically rounded morphology. After 28 days of culture within Col-Chi-CS scaffold in vitro, the results of histological staining showed forming of cartilage-specific morphological appearance and structural characteristics such as lacunae. Subcutaneous implantation studies in nude mice demonstrated that a homogeneous cartilaginous tissue, which was similar to those of natural cartilage, formed when chondrocytes were seeded in Col-Chi-CS matrix after implant 12 weeks. The tri-copolymer matrix could therefore have potential applications as a three-dimensional scaffold for cartilage tissue engineering.  相似文献   

17.
18.
Healing capacity of cartilage is low. Thus, cartilage defects do not regenerate as hyaline but mostly as fibrous cartilage which is a major drawback since this tissue is not well adapted to the mechanical loading within the joint. During in vitro cultivation in monolayers, chondrocytes proliferate and de-differentiate to fibroblasts. In three-dimensional cell cultures, de-differentiated chondrocytes could re-differentiate toward the chondrogenic lineage and re-express the chondrogenic phenotype. The objective of this study was to characterize the mesenchymal stem cell (MSC) potential of human chondrocytes isolated from articular cartilage. Furthermore, the differentiation capacity of human chondrocytes in three-dimensional cell cultures was analyzed to target differentiation direction into hyaline cartilage. After isolation and cultivation of chondrogenic cells, the expression of the MSC-associated markers: cluster of differentiation (CD)166, CD44, CD105, and CD29 was performed by flow cytometry. The differentiation capacity of human chondrocytes was analyzed in alginate matrix cultured in Dulbecco’s modified eagle medium with (chondrogenic stimulation) and without (control) chondrogenic growth factors. Additionally, the expression of collagen type II, aggrecan, and glycosaminoglycans was determined. Cultivated chondrocytes showed an enhanced expression of the MSC-associated markers with increasing passages. After chondrogenic stimulation in alginate matrix, the chondrocytes revealed a significant increase of cell number compared with unstimulated cells. Further, a higher synthesis rate of glycosaminoglycans and a positive collagen type II and aggrecan immunostaining was detected in stimulated alginate beads. Human chondrocytes showed plasticity whilst cells were encapsulated in alginate and stimulated by growth factors. Stimulated cells demonstrated characteristics of chondrogenic re-differentiation due to collagen type II and aggrecan synthesis.  相似文献   

19.
20.
Articular chondrocytes can synthesize new cartilaginous matrix in vivo that forms functional bonds with native cartilage. Other sources of chondrocytes may have a similar ability to form new cartilage with healing capacity. This study evaluates the ability of various chondrocyte sources to produce new cartilaginous matrix in vivo and to form functional bonds with native cartilage. Disks of articular cartilage and articular, auricular, and costal chondrocytes were harvested from swine. Articular, auricular, or costal chondrocytes suspended in fibrin glue (experimental), or fibrin glue alone (control), were placed between disks of articular cartilage, forming trilayer constructs, and implanted subcutaneously into nude mice for 6 and 12 weeks. Specimens were evaluated for neocartilage production and integration into native cartilage with histological and biomechanical analysis. New matrix was formed in all experimental samples, consisting mostly of neocartilage integrating with the cartilage disks. Control samples developed fibrous tissue without evidence of neocartilage. Ultimate tensile strength values for experimental samples were significantly increased (p < 0.05) from 6 to 12 weeks, and at 12 weeks they were significantly greater (p < 0.05) than those of controls. We conclude that articular, auricular, and costal chondrocytes have a similar ability to produce new cartilaginous matrix in vivo that forms mechanically functional bonds with native cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号