首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MBOAT7 gene pathogenic variants are a newly discovered and rare cause for intellectual disability, autism spectrum disorder (ASD), seizures, truncal hypotonia, appendicular hypertonia, and below average head sizes (ranging from ?1 to ?3 standard deviations). There have been only 16 individuals previously reported who have MBOAT7‐related intellectual disability, all of whom were younger than 10 years old and from consanguineous relationships. Thus, there is a lack of phenotypic information for adolescent and adult individuals with this disorder. Medical genetics and psychiatric evaluations in a 14‐year‐old female patient with a history of global developmental delay, intellectual disability, overgrowth with macrocephaly, metrorrhagia, seizures, basal ganglia hyperintensities, nystagmus, strabismus with amblyopia, ASD, anxiety, attention deficit hyperactivity disorder (ADHD), aggressive outbursts, and hyperphagia included a karyotype, methylation polymerase chain reaction for Prader‐Willi/Angelman syndrome, chromosome microarray, and whole exome sequencing (WES), ADOS2, and ADI‐R. WES identified a homozygous, likely pathogenic variant in the MBOAT7 gene (c.855‐2A>G). This is the oldest known patient with MBOAT7‐related intellectual disability, whose unique features compared with previously described individuals include overgrowth with macrocephaly, metrorrhagia, ophthalmological abnormalities, basal ganglia hyperintensities, unspecified anxiety disorder, and ADHD; combined type; and hyperphagia with the absence of appendicular hypertonia and cortical atrophy. More individuals need to be identified in order to delineate the full clinical spectrum of this disorder.  相似文献   

2.
Glycosylphosphatidylinositol (GPI) is a glycolipid that tethers more than 150 different proteins to the cell surface. Aberrations in biosynthesis of GPI anchors cause congenital disorders of glycosylation with clinical features including intellectual disability (ID), seizures, and facial dysmorphism. Here, we present two siblings with ID, cerebellar hypoplasia, cerebellar ataxia, early‐onset seizures, and minor facial dysmorphology. Using exome sequencing, we identified a homozygous nonsense variant (NM_001127178.1:c.1640G>A, p.Trp547*) in the gene Phosphatidylinositol Glycan Anchor Biosynthesis, Class G (PIGG) in both the patients. Variants in several other GPI anchor synthesis genes lead to a reduced expression of GPI‐anchored proteins (GPI‐APs) that can be measured by flow cytometry. No significant differences in GPI‐APs could be detected in patient granulocytes, consistent with recent findings. However, fibroblasts showed a reduced global level of GPI anchors and of specific GPI‐linked markers. These findings suggest that fibroblasts might be more sensitive to pathogenic variants in GPI synthesis pathway and are well suited to screen for GPI‐anchor deficiencies. Based on genetic and functional evidence, we confirm that pathogenic variants in PIGG cause an ID syndrome, and we find that loss of function of PIGG is associated with GPI deficiency.  相似文献   

3.
Whole exome sequencing (WES) has led to the understanding of the molecular events affecting neurodevelopment in an extremely diverse clinical context, including diseases with intellectual disability (ID) associated with variable central nervous system (CNS) malformations, and developmental and epileptic encephalopathies (DEEs). Recently, PACS2 mutations have been causally linked to a DEE with cerebellar dysgenesis and facial dysmorphism. All known patients presented with a recurrent de novo missense mutation, c.625G>A (p.Glu209Lys). Here, we report on a 7-year-old boy with DEE, cerebellar dysgenesis, facial dysmorphism and postnatal growth delay, apparently not fitting with any recognized disorder. WES disclosed a de novo novel missense PACS2 variant, c.631G>A (p.Glu211Lys), as the molecular cause of this complex phenotype. We provide a detailed clinical characterization of this patient, and analyse the available clinical data of individuals with PACS2 mutations to delineate more accurately the clinical spectrum associated with this recently described syndrome. Our study expands the clinical and molecular spectrum of PACS2 mutations. Overview of the available clinical data allow to delineate the condition associated with PACS2 mutations as a variable trait, in which the key features are represented by moderate to severe ID, cerebellar dysgenesis and other CNS malformations, reduced growth, and facial dysmorphism.  相似文献   

4.
Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal to neurodevelopmental disorder, and cerebellar atrophy with or without seizures, without obvious genotype–phenotype associations. We describe two families at the mildest end of the spectrum, differing in clinical presentation despite a common genotype at the BRAT1 locus. Two siblings displayed nonprogressive congenital ataxia and shrunken cerebellum on magnetic resonance imaging. A third unrelated patient showed normal neurodevelopment, adolescence-onset seizures, and ataxia, shrunken cerebellum, and ultrastructural abnormalities on skin biopsy, representing the mildest form of NEDCAS hitherto described. Exome sequencing identified the c.638dup and the novel c.1395G>A BRAT1 variants, the latter causing exon 10 skippings. The p53-MCL test revealed normal ATM kinase activity. Our findings broaden the allelic and clinical spectrum of BRAT1-related disease, which should be suspected in presence of nonprogressive cerebellar signs, even without a neurodevelopmental disorder.  相似文献   

5.
Combined oxidative phosphorylation deficiency type 53 (COXPD53) is an autosomal recessive neurodevelopmental disorder (NDD) caused by homozygous variants in the gene C2orf69. Here, we report a novel frameshift variant c.187_191dupGCCGA, p.D64Efs*56 identified in an individual with clinical presentation of COXPD53 with developmental regression and autistic features. The variant c.187_191dupGCCGA, p.D64Efs*56 represents the most N-terminal part of C2orf69. Notable clinical features of COXPD53of the proband include developmental delay, developmental regression, seizures, microcephaly, and hypertonia. Structural brain defects of cerebral atrophy, cerebellar atrophy, hypomyelination, and thin corpus callosum were also observed. While we observe strong phenotypic overlap among affected individuals with C2orf69 variants, developmental regression and autistic features have not been previously described in individuals with COXPD53. Together, this case expands the genetic and clinical phenotypic spectrum of C2orf69-associated COXPD53.  相似文献   

6.
7.
Pathogenic variants in polynucleotide kinase 3′‐phosphatase (PNKP) gene have been associated with two distinct clinical presentations: autosomal recessive microcephaly, seizures, and developmental delay (MCSZ; MIM 613402) and ataxia with oculomotor apraxia type 4 (AOA4; MIM 616267). More than 40 patients have been reported so far, and their clinical presentations revealed a continuum phenotypic spectrum ranging from congenital microcephaly and early‐onset intractable seizures, to adult onset slowly progressive sensory‐motor neuropathy and cerebellar ataxia. We describe three unrelated Italian patients with different phenotypes and novel or recurrent pathogenic variants in PNKP gene. Patient 1, homozygous for the recurrent frameshift variant (p.Thr424Glyfs*49), had an early‐onset MCSZ phenotype. Late in the disease progression, cerebellar ataxia and peripheral neuropathy were recognized. Patient 2, homozygous for a frameshift variant (p.Ala429Thrfs*42), presented a phenotype partially consistent with MCSZ including microcephaly and developmental delay, but without seizures. Patient 3 is one of the oldest patients described to date and presented polyneuropathy, and cerebellar signs. Biochemical tests showed abnormalities of cholesterol, albumin, or alpha‐fetoprotein plasma levels. The clinical presentation of our patients encompassed early‐to‐adult‐onset manifestations. For these cases, the long clinical follow‐up allowed an in‐depth phenotypic characterization and a better delineation of the natural history of patients carrying PNKP pathogenic variants.  相似文献   

8.
Infantile hereditary lower motor neuron disorders beyond 5q–spinal muscular atrophy (5q‐SMA) are usually caused by mutations other than deletions or mutations in SMN1. In addition to motor neuron degeneration, further neurologic or multisystemic pathologies in non‐5q‐SMAs are not seldom. Some of the non‐5q‐SMA phenotypes, such as pontocerebellar hypoplasia (PCH1), have been classified later as a different disease group due to distinctive primary pathologies. Likewise, a novel phenotype, childhood‐onset neurodegeneration with cerebellar atrophy (CONDCA) has been described recently in individuals with lower motor neuron disorder and cerebellar atrophy due to biallelic loss‐of‐function variants in AGTPBP1 that encodes cytosolic carboxypeptidase 1 (CCP1). Here we present two individuals with CONDCA in whom a biallelic missense AGTPBP1 variant (NM_001330701.1:c.2396G>T, p.Arg799Leu) was identified by whole exome sequencing. Affected individuals in this report correspond to the severe infantile spectrum of the disease and underline the severe pathogenic effect of this missense variant. This report is the second in the literature that delineates the pathogenic effects of biallelic AGTPBP1 variants presenting the recently described CONDCA disease.  相似文献   

9.
Developmental and Epileptic encephalopathies (DEE) describe heterogeneous epilepsy syndromes, characterized by early‐onset, refractory seizures and developmental delay (DD). Several DEE associated genes have been reported. With increased access to whole exome sequencing (WES), new candidate genes are being identified although there are fewer large cohort papers describing the clinical phenotype in such patients. We describe 6 unreported individuals and provide updated information on an additional previously reported individual with heterozygous de novo missense variants in YWHAG. We describe a syndromal phenotype, report 5 novel, and a recurrent p.Arg132Cys YWHAG variant and compare developmental trajectory and treatment strategies in this cohort. We provide further evidence of causality in YWHAG variants. WES was performed in five patients via Deciphering Developmental Disorders Study and the remaining two were identified via Genematcher and AnnEX databases. De novo variants identified from exome data were validated using Sanger sequencing. Seven out of seven patients in the cohort have de novo, heterozygous missense variants in YWHAG including 2/7 patients with a recurrent c.394C > T, p.Arg132Cys variant; 1/7 has a second, pathogenic variant in STAG1. Characteristic features included: early‐onset seizures, predominantly generalized tonic–clonic and absence type (7/7) with good response to standard anti‐epileptic medications; moderate DD; Intellectual Disability (ID) (5/7) and Autism Spectrum Disorder (3/7). De novo YWHAG missense variants cause EE, characterized by early‐onset epilepsy, ID and DD, supporting the hypothesis that YWHAG loss‐of‐function causes a neurological phenotype. Although the exact mechanism of disease resulting from alterations in YWHAG is not fully known, it is possible that haploinsufficiency of YWHAG in developing cerebral cortex may lead to abnormal neuronal migration resulting in DEE.  相似文献   

10.
The devastating clinical presentation of X‐linked lissencephaly with abnormal genitalia (XLAG) is invariably caused by loss‐of‐function mutations in the Aristaless‐related homeobox (ARX) gene. Mutations in this X‐chromosome gene contribute to intellectual disability (ID) with co‐morbidities including seizures and movement disorders such as dystonia in affected males. The detection of affected females with mutations in ARX is increasing. We present a family with multiple affected individuals, including two females. Two male siblings presenting with XLAG were deceased prior to full‐term gestation or within the first few weeks of life. Of the two female siblings, one presented with behavioral disturbances, mild ID, a seizure disorder, and complete agenesis of the corpus callosum (ACC), similar to the mother's phenotype. A novel insertion mutation in Exon 2 of ARX was identified, c.982delCinsTTT predicted to cause a frameshift at p.(Q328Ffs*37). Our finding is consistent with loss‐of‐function mutations in ARX causing XLAG in hemizygous males and extends the findings of ID and seizures in heterozygous females. We review the reported phenotypes of females with mutations in ARX and highlight the importance of screening ARX in male and female patients with ID, seizures, and in particular with complete ACC.  相似文献   

11.
In recent years, several genes have been implicated in the variable disease presentation of global developmental delay (GDD) and intellectual disability (ID). The endoplasmic reticulum membrane protein complex (EMC) family is known to be involved in GDD and ID. Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders. EMC10 is a bone marrow-derived angiogenic growth factor that plays an important role in infarct vascularization and promoting tissue repair. However, this gene has not been previously associated with human disease. Herein, we describe a Saudi family with two individuals segregating a recessive neurodevelopmental disorder. Both of the affected individuals showed mild ID, speech delay, and GDD. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify candidate genes. Further, to elucidate the functional effects of the variant, quantitative real-time PCR (RT-qPCR)-based expression analysis was performed. WES revealed a homozygous splice acceptor site variant (c.679-1G>A) in EMC10 (chromosome 19q13.33) that segregated perfectly within the family. RT-qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients, indicating the pathogenicity of the identified variant. For the first time in the literature, the EMC10 gene variant was associated with mild ID, speech delay, and GDD. Thus, this gene plays a key role in developmental milestones, with the potential to cause neurodevelopmental disorders in humans.  相似文献   

12.
13.
Mutations in SPTAN1 gene, encoding the nonerythrocyte αII-spectrin, are responsible for a severe developmental and epileptic encephalopathy (DEE5) and a wide spectrum of neurodevelopmental disorders, as epilepsy with or without intellectual disability (ID) or ID with cerebellar syndrome. A certain genotype–phenotype correlation has been proposed according to the type and location of the mutation. Herein, we report three novel cases with de novo SPTAN1 mutations, one of them associated to a mild phenotype not previously described. They range from (1) severe developmental encephalopathy with ataxia and a mild cerebellar atrophy, without epilepsy; (2) moderate intellectual disability, severe language delay, ataxia and tremor; (3) normal intelligence, chronic migraine, and generalized tonic–clonic seizures. Remarkably, all these patients showed brain MRI abnormalities, being of special interest the subependymal heterotopias detected in the latter patient. Thus we extend the SPTAN1-related phenotypic spectrum, both in its radiological and clinical involvement. Furthermore, after systematic analysis of all the patients so far reported, we noted an excess of male versus female patients (20:9, p = 0.04), more pronounced among the milder phenotypes. Consequently, some protection factor might be suspected among female carriers, which if confirmed should be considered when establishing the pathogenicity of milder genetic variants in this gene.  相似文献   

14.
15.
16.
17.
Al‐Owain M, Kaya N, Al‐Zaidan H, Al‐Hashmi N, Al‐Bakheet A, Al‐Muhaizea M, Chedrawi A, Basran RK, Milunsky A. Novel intragenic deletion in OPHN1 in a family causing XLMR with cerebellar hypoplasia and distinctive facial appearance. X‐linked mental retardation (XLMR) is notably a heterogeneous condition and often poses a diagnostic challenge. The oligophrenin 1 gene (OPHN1) is a protein with a Rho‐GTPase‐activating domain required in the regulation of the G‐protein cycle. Mutations in the OPHN1 cause XLMR with cerebellar hypoplasia and distinctive facial appearance. We report a large Saudi family of four boys and one girl affected with XLMR. The boys had moderate MR, seizure disorder, facial dysmorphism, and cerebellar vermis hypoplasia. The girl had mild MR, seizures, and mild cerebellar hypoplasia. A novel deletion of at least exons 7–15 was identified by polymerase chain reaction analysis and multiple ligation probe amplification of the OPHN1 gene. The array comparative genomic hybridization further delineated approximately 68 kb deletion of the 7–15 exons and nearly half of intron 15. In addition, the X‐inactivation confirmed random pattern in the girl. Although the affected boys have remarkably similar phenotype, there was some variability in the severity of the seizure disorder and the cerebellar hypoplasia. The report confirms the previous findings that carrier females may be symptomatic.  相似文献   

18.
Pathogenic variants in the cyclin‐dependent kinase‐like 5 (CDKL5) gene cause the neurodevelopmental disorder, the CDKL5 deficiency disorder. Reports of individuals with pathogenic variants in CDKL5 without seizures are exceedingly rare, and in‐depth analyses of their variants have been lacking. Whole‐genome sequencing was performed on a 29‐year‐old female with mild intellectual disability who, in the absence of overt seizures, presented with multiple episodes of altered mental status over a 24‐year period. Clinical history was supplemented by a parent completed questionnaire from the International CDKL5 Disorder Database. We identified a de novo heterozygous variant in CDKL5 (NM_003159.2:c.645T>A;p.Ser215Arg). In‐depth computational analysis performed to predict the impact of the variant on protein structure and function demonstrated that the variant was likely pathogenic. In this light, cell‐based studies showed that the S215R substitution causes a marked reduction in CDKL5 kinase activity. Similarities between our case and one previously reported case are striking. These cases, both without seizures but with apparent behavioral symptomatology, together question whether seizures are mandatory in this neurodevelopmental disorder.  相似文献   

19.
20.
Boucher–Neuhäuser syndrome (BNHS) is characterized by chorioretinal dystrophy, hypogonadotropic hypogonadism, and cerebellar dysfunction and atrophy. The disorder has been associated with biallelic pathogenic variants in the patatin-like phospholipase domain-containing protein 6 (PNPLA6) gene. We present an individual with a clinical diagnosis consistent with BNHS who lacked any PNPLA6 variants but on quartet family exome sequencing had a de novo variant in the hexokinase 1 (HK1) gene (NM_000188.2 [GRCh37/hg19]: g.71139826G>A, c.1240G>A, p.Gly414Arg), suggesting genetic heterogeneity for BNHS. Longitudinal follow-up indicated neurological deterioration, neuropsychiatric symptoms, and progressive cerebellar atrophy. The BNHS phenotype overlaps and expands the known HK1 genotypic and phenotypic spectrum. Individuals with variants in HK1 should undergo evaluation for hypogonadotropic hypogonadism, potentially amenable to treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号