首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The Fontan procedure is a palliative surgical technique that is used to treat patients with congenital heart defects that include complex lesions such as those with a hypoplastic ventricle. In vitro, in vivo, and computational models of a set of modifications to the Fontan procedure, called the total cavopulmonary connection (TCPC), have been developed. Using these modeling methods, attempts have been made at finding the most energy efficient TCPC circuit. Computational modeling has distinct advantages to other modeling methods. However, discrepancies have been found in validation studies of TCPC computational models. There is little in the literature available to help explain and correct for such discrepancies. Differences in computational results can occur when choosing between steady flow versus transient flow numerical solvers. In this study transient flow solver results were shown to be more consistent with results from previous TCPC in vitro experiments. Using a transient flow solver we found complex fluctuating flow patterns can exist with steady inflow boundary conditions in computational models of the TCPC. To date such findings have not been reported in the literature. Furthermore, our computational modeling results suggest fluctuating flow patterns as well as the magnitudes of these secondary flow structures diminish if the TCPC offset between vena cavae is increased or if flanged connections are added. An association was found between these modifications and improvements in TCPC circuit flow efficiencies. In summary, development of accurate computational simulations in the validation process is critical to efforts in finding the most efficient TCPC circuits, efforts aimed at potentially improving the long term outcome for Fontan patients.  相似文献   

2.
Minimizing pressure drop through the total cavopulmonary surgical connection (TCPC), where the superior and inferior vena cavae (SVC), (IVC) are connected directly to the right and left pulmonary arteries, is an important clinical consideration. Computational fluid dynamics (CFD) models have been used to examine the impact of connection configuration on TCPC pressure drop. However, few studies have validated CFD results with experimental data. This study compares flow field measurements on two different TCPC models at varying SVC:IVC flow rate ratios using CFD and digital particle image velocimetry (DPIV). Although the primary flow fields generated by CFD and DPIV methods were similar for the majority of flow conditions, three key differences were found: (1) the CFD model did not reproduce the 3D complexity of flow interactions in the no-offset model with 50:50 flow ratio; (2)in vitro results showed consistently higher secondary flow components within the pulmonary artery segments, especially for the no-offset model; (3) recirculation areas for the 1/2 diameter offset model were consistently higher forin vitro versus CFD results. We conclude that this numerical model is a reasonable means of studying TCPC flow, although modifications need to be addressed to ensure that numerical results reproduce secondary flow characteristics. © 2003 Biomedical Engineering Society. PAC2003: 8719Uv, 8719Hh, 8710+e  相似文献   

3.
Previous in vitro studies have shown that total cavopulmonary connection (TCPC) models incorporating offset between the vena cavae are energetically more efficient than those without offsets. In this study, the impact of reducing simplifying assumptions, thereby producing more physiologic models, was investigated by computational fluid dynamics (CFD) and particle flow visualization experiments. Two models were constructed based on angiography measurements. The first model retained planar arrangement of all vessels involved in the TCPC but incorporated physiologic vessel diameters. The second model consisted of constant-diameter vessels with nonplanar vascular features. CFD and in vitro experiments were used to study flow patterns and energy losses within each model. Energy losses were determined using three methods: theoretical control volume, simplified control volume, and velocity gradient based dissipation. Results were compared to a simplified model control. Energy loss in the model with physiologically more accurate vessel diameters was 150% greater than the simplified model. The model with nonplanar features produced an asymmetric flow field with energy losses approximately 10% higher than simplified model losses. With the velocity gradient based dissipation technique, the map of energy dissipation was plotted revealing that most of the energy was dissipated near the pulmonary artery walls. © 2001 Biomedical Engineering Society. PAC01: 8719Uv, 8710+e, 8780-y  相似文献   

4.
Congenital heart defects with a single functional ventricle, such as hypoplastic left heart syndrome and tricuspid atresia, require a staged surgical approach to separate the systemic and pulmonary circulations. Ultimately, the venous or pulmonary side of the heart is bypassed by directly connecting the vena cava to the pulmonary arteries with a modified t-shaped junction. The Fontan procedure (total cavopulmonary connection, TCPC) completes this process of separation. To date, computational fluid dynamics (CFD) simulations in this low pressure, passive flow, intrathoracic system have neglected the presumed important effects of respiration on physiology and higher “stress” states such as with exercise have never been considered. We hypothesize that incorporating effects of respiration and exercise would provide more realistic estimates of TCPC performance. Time-dependent, 3D blood flow simulations are performed by a custom finite element solver for two patient-specific Fontan models with a novel respiration model, developed to generate physiologic time-varying flow conditions. Blood flow features, pressure, and energy efficiency are analyzed at rest and with increasing flow rates to simulate exercise conditions. The simulations produce realistic pressure and flow data, comparable to that measured by catheterization and echocardiography, and demonstrate substantial increases in energy dissipation (i.e. decreased performance) with exercise and respiration due to increasing intensity of small scale vortices in the flow. As would be expected, these changes are highly dependent on patient-specific anatomy and Fontan geometry. We propose that respiration and exercise should be incorporated into TCPC CFD simulations to provide increasingly realistic evaluations of TCPC performance.  相似文献   

5.
Since the first successful implantation of a prosthetic heart valve four decades ago, over 50 different designs have been developed including both mechanical and bioprosthetic valves. Today, the most widely implanted design is the mechanical bileaflet, with over 170,000 implants worldwide each year. Several different mechanical valves are currently available and many of them have good bulk forward flow hemodynamics, with lower transvalvular pressure drops, larger effective orifice areas, and fewer regions of forward flow stasis than their earlier-generation counterparts such as the ball-and-cage and tilting-disc valves. However, mechanical valve implants suffer from complications resulting from thrombus deposition and patients implanted with these valves need to be under long-term anti-coagulant therapy. In general, blood thinners are not needed with bioprosthetic implants, but tissue valves suffer from structural failure with, an average life-time of 10–12 years, before replacement is needed. Flow-induced stresses on the formed elements in blood have been implicated in thrombus initiation within the mechanical valve prostheses. Regions of stress concentration on the leaflets during the complex motion of the leaflets have been implicated with structural failure of the leaflets with bioprosthetic valves. In vivo and in vitro experimental studies have yielded valuable information on the relationship between hemodynamic stresses and the problems associated with the implants. More recently, Computational Fluid Dynamics (CFD) has emerged as a promising tool, which, alongside experimentation, can yield insights of unprecedented detail into the hemodynamics of prosthetic heart valves. For CFD to realize its full potential, however, it must rely on numerical techniques that can handle the enormous geometrical complexities of prosthetic devices with spatial and temporal resolution sufficiently high to accurately capture all hemodynamically relevant scales of motion. Such algorithms do not exist today and their development should be a major research priority. For CFD to further gain the confidence of valve designers and medical practitioners it must also undergo comprehensive validation with experimental data. Such validation requires the use of high-resolution flow measuring tools and techniques and the integration of experimental studies with CFD modeling.  相似文献   

6.
Creation of an arteriovenous fistula (AVF) for hemodialysis may result in cardiac failure due to dramatic increases in cardiac output. To investigate the quantitative relations between AVF flow, changes in cardiac output, myocardial stress and strain and resulting left ventricular adaptation, a computational model is developed. The model combines a one-dimensional pulse wave propagation model of the arterial network with a zero-dimensional one-fiber model of cardiac mechanics and includes adaptation rules to capture the effect of the baro-reflex and long-term structural remodelling of the left ventricle. Using generic vascular and cardiac parameters based on literature, simulations are done that illustrate the model??s ability to quantitatively reproduce the clinically observed increase in brachial flow and cardiac output as well as occurence of eccentric hypertrophy. Patient-specific clinical data is needed to investigate the value of the computational model for personalized predictions.  相似文献   

7.
A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.  相似文献   

8.
In pediatric ventricular assist device (VAD) design, the process of matching device characteristics and dimensions to the relevant disease conditions poses a formidable challenge because the disease spectrum is more highly varied than for adult applications. One example arises with single-ventricle congenital defects, which demand palliative surgeries that create elevated systemic venous pressure and altered pulmonary hemodynamics. Substituting a mechanical pump as a right ventricle has long been proposed to eliminate the associated early and postoperative anomalies. A pulsatile lumped-parameter model of the single-ventricle circulation was developed to guide the preliminary design studies. Two special modules, the pump characteristics and the total cavopulmonary connection (TCPC) module, are introduced. The TCPC module incorporates the results of three-dimensional patient-specific computational fluid dynamics calculations, where the pressure drop in the TCPC anastomosis is calculated at the equal vascular lung resistance operating point for different cardiac outputs at a steady 60/40 inferior vena cava/superior vena cava flow split. Preliminary results obtained with the adult parameters are presented with no ventricle remodeling or combined larger-size single ventricle. A detailed literature review of single-ventricle function is provided. Coupling a continuous pump to the single-ventricle circulation brought both the pulmonary and systemic venous pressures back to manageable levels. Selected VADs provided an acceptable cardiac output trace of the single left ventricle, after initial transients. Remodeling of the systemic venous compliance plays a critical role in performance and is included in this study. Pulsatile operation mode with rotational speed regulation highlighted the importance of TCPC and pulmonary artery compliances. Four different pumps and three patient-specific anatomical TCPC pathologies were studied. Magnitudes of the equivalent TCPC resistances were found to be comparable to the vascular resistances of the normal baseline circulation, significantly affecting both the VAD design and hemodynamics.  相似文献   

9.
The main objective of this study is to investigate the major physical processes taking place inside an infant incubator, before and after modifications have been made to its interior chamber. The modification involves the addition of an overhead screen to decrease radiation heat losses from the infant placed inside the incubator. The present study investigates the effect of these modifications on the convective heat flux from the infant's body to the surrounding environment inside the incubator. A combined analysis of airflow and heat transfer due to conduction, convection, radiation and evaporation has been performed, in order to calculate the temperature and velocity fields inside the incubator before and after the design modification. Due to the geometrical complexity of the model, computer-aided design (CAD) applications were used to generate a computer-based model. All numerical calculations have been performed using the commercial computational fluid dynamics (CFD) package FLUENT, together with in-house routines used for managing purposes and user-defined functions (UDFs) which extend the basic solver capabilities. Numerical calculations have been performed for three different air inlet temperatures: 32, 34 and 36 degrees C. The study shows a decrease of the radiative and convective heat losses when the overhead screen is present. The results obtained were numerically verified as well as compared with results available in the literature from investigations of dry heat losses from infant manikins.  相似文献   

10.
The total cavopulmonary connection (TCPC) is currently the most promising modification of the Fontan surgical repair for single ventricle congenital heart disease. The TCPC involves a surgical connection of the superior and inferior vena cavae directly to the left and right pulmonary arteries, bypassing the right heart. In the univentricular system, the ventricle experiences a workload which may be reduced by optimizing the cavae-to-pulmonary anastomosis. The hypothesis of this study was that the energetic efficiency of the connection is a consequence of the fluid dynamics which develop as a function of connection geometry. Magnetic resonance phase velocity mapping (MRPVM) and digital particle image velocimetry (DPIV) were used to evaluate the flow patterns in vitro in three prototype glass models of the TCPC: flared zero offset, flared 14 mm offset, and straight 21 mm offset. The flow field velocity along the symmetry plane of each model was chosen to elucidate the fluid mechanics of the connection as a function of the connection geometry and pulmonary artery flow split. The steady flow experiments were conducted at a physiologic cardiac output (4 L/min) over three left/right pulmonary flow splits (70/30, 50/50, and 30/70) while keeping the superior/inferior vena cavae flow ratio constant at 40/60. MRPVM, a noninvasive clinical technique for measuring flow field velocities, was compared to DPIV, an established in vitro fluid mechanic technique. A comparison between the results from both techniques showed agreement of large scale flow features, despite some discrepancies in the detailed flow fields. The absence of caval offset in the flared zero offset model resulted in significant caval flow collision at the connection site. In contrast, offsetting the cavae reduced the flow interaction and caused a vortex-like low velocity region between the caval inlets as well as flow disturbance in the pulmonary artery with the least total flow. A positive correlation was also found between the direct caval flow collision and increased power losses. MRPVM was able to elucidate these important fluid flow features, which may be important in future modifications in TCPC surgical designs. Using MRPVM, two- and three-directional velocity fields in the TCPC could be quantified. Because of this, MRPVM has the potential to provide accurate velocity information clinically and, thus, to become the in vivo tool for TCPC patient physiological/functional assessment. © 2000 Biomedical Engineering Society. PAC00: 8719Uv, 8761Lh, 8757Ce, 8719Hh  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号