首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Kidney injury molecule‐1 (KIM‐1) is a marker for renal proximal tubular damage, the hallmark of virtually all proteinuric, toxic and ischaemic kidney diseases. KIM‐1 has gained increasing interest because of its possible pathophysiological role in modulating tubular damage and repair. In this respect, it is interesting that the best biomarkers often turn out to be important in modulation of damage and some even become therapeutic targets. The emphasis of this review is on structural and biochemical aspects of KIM‐1, its expression pattern and its pathophysiological role in renal disease. We also discuss the prognostic impact of KIM‐1 in relation to urinary protein excretion. Glomerular (proteinuria) and interstitial markers (KIM‐1) might have independent prognostic impact and so may provide independent treatment targets. Finally, the potential of KIM‐1 as biomarker of renal damage, as a predictor of renal function decline and its perspectives for monitoring therapy response, are discussed. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

2.
Various complement‐mediated renal disorders are treated currently with the complement inhibitor eculizumab. By blocking the cleavage of C5, this monoclonal antibody prevents cell damage caused by complement‐mediated inflammation. We included 23 patients with atypical haemolytic uraemic syndrome (aHUS, n = 12), C3 glomerulopathies (C3G, n = 9) and acute antibody‐mediated renal graft rejection (AMR, n = 2), treated with eculizumab in 12 hospitals in Germany. We explored the course of complement activation biomarkers and the benefit of therapeutic drug monitoring of eculizumab. Complement activation was assessed by analysing the haemolytic complement function of the classical (CH50) and the alternative pathway (APH50), C3 and the activation products C3d, C5a and sC5b‐9 prior to, 3 and 6 months after eculizumab treatment. Eculizumab concentrations were determined by a newly established specific enzyme‐linked immunosorbent assay (ELISA). Serum eculizumab concentrations up to 1082 μg/ml point to drug accumulation, especially in paediatric patients. Loss of the therapeutic antibody via urine with concentrations up to 56 μg/ml correlated with proteinuria. In aHUS patients, effective complement inhibition was demonstrated by significant reductions of CH50, APH50, C3d and sC5b‐9 levels, whereas C5a levels were only reduced significantly after 6 months' treatment. C3G patients presented increased C3d and consistently low C3 levels, reflecting ongoing complement activation and consumption at the C3 level, despite eculizumab treatment. A comprehensive complement analysis together with drug monitoring is required to distinguish mode of complement activation and efficacy of eculizumab treatment in distinct renal disorders. Accumulation of the anti‐C5 antibody points to the need for a patient‐orientated tailored therapy.  相似文献   

3.
Disruption of the regulatory role of the kidneys leads to diverse renal pathologies; one major hallmark is inflammation and fibrosis. Conventional magnitude MRI has been used to study renal pathologies; however, the quantification or even detection of focal lesions caused by inflammation and fibrosis is challenging. We propose that quantitative susceptibility mapping (QSM) may be particularly sensitive for the identification of inflammation and fibrosis. In this study, we applied QSM in a mouse model deficient for angiotensin receptor type 1 (AT1). This model is known for graded pathologies, including focal interstitial fibrosis, cortical inflammation, glomerulocysts and inner medullary hypoplasia. We acquired high‐resolution MRI on kidneys from AT1‐deficient mice that were perfusion fixed with contrast agent. Two MR sequences were used (three‐dimensional spin echo and gradient echo) to produce three image contrasts: T1, T2* (magnitude) and QSM. T1 and T2* (magnitude) images were acquired to segment major renal structures and to provide landmarks for the focal lesions of inflammation and fibrosis in the three‐dimensional space. The volumes of major renal structures were measured to determine the relationship of the volumes to the degree of renal abnormalities and magnetic susceptibility values. Focal lesions were segmented from QSM images and were found to be closely associated with the major vessels. Susceptibilities were relatively more paramagnetic in wild‐type mice: 1.46 ± 0.36 in the cortex, 2.14 ± 0.94 in the outer medulla and 2.10 ± 2.80 in the inner medulla (10–2 ppm). Susceptibilities were more diamagnetic in knockout mice: –7.68 ± 4.22 in the cortex, –11.46 ± 2.13 in the outer medulla and –7.57 ± 5.58 in the inner medulla (10–2 ppm). This result was consistent with the increase in diamagnetic content, e.g. proteins and lipids, associated with inflammation and fibrosis. Focal lesions were validated with conventional histology. QSM was very sensitive in detecting pathology caused by small focal inflammation and fibrosis. QSM offers a new MR contrast mechanism to study this common disease marker in the kidney. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Background : While the renal system is critical for maintaining homeostatic equilibrium within the body, it is also susceptible to various kinds of damage. Tubule dysfunction in particular contributes to acute renal injury and chronic kidney disease in millions of patients worldwide. Because current treatments are highly invasive and often unavailable, gaining a better understanding of the regenerative capacity of renal structures is vital. Although the effects of various types of acute damage have been previously studied, the ability of the excretory system to repair itself after dramatic tissue loss due to mechanical damage is less well characterized. Results : A novel unilateral nephrectomy technique was developed to excise pronephric proximal tubules from Xenopus laevis tadpoles to study tubule repair after injury. Immunohistochemical detection of protein expression and renal uptake assays demonstrated that X. laevis larvae have the capacity to regenerate functional proximal tubules following resection. Conclusions : We have validated the renal identity of the restored tubules and demonstrated their ability to functional normally providing the first evidence of regeneration of renal tissue in an amphibian system. Importantly, this tubule restoration occurs by means of a process involving an early apoptotic event and the biphasic expression of the matrix metalloproteinase, Xmmp‐9. Developmental Dynamics 242:219–229, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
To examine the effects of intrauterine growth restriction on nephron number, renal circulation, and renal excretory functions in newborns, studies were conducted on 1‐day‐old anaesthetized piglets, divided into normal weight (n = 6) and intrauterine growth restricted (n = 6) piglets. Renal blood flow was measured by coloured microspheres, glomerular filtration rate was measured by inulin clearance, and osmotic clearance and fractional sodium excretion were calculated. In addition, an estimation of the nephron number was performed by counting representative glomerular numbers in microscopic sections. Newborn intrauterine growth restricted piglets exhibited a reduced glomerular filtration rate and osmotic clearance (P < 0.05), whereas renal blood flow and the filtration fraction as well as fractional sodium excretion were similar in normal weight and intrauterine growth restricted piglets. The nephron number was markedly reduced in intrauterine growth restricted piglets even if the nephron number was related to body weight (P < 0.01). There was a positive correlation between nephron number and glomerular filtration rate (r = 0.69, P < 0.05). Reduced glomerular filtration rate of newborn intrauterine growth restricted piglets is associated with a reduced nephron number. Thus, at birth, compensatory response of renal function due to nephron deficit does not exist in intrauterine growth restricted piglets.  相似文献   

6.
7.
《Immunology》2017,151(2):219-226
Impaired T helper type 1 (Th1) function is implicated in the susceptibility of patients with chronic obstructive pulmonary disease (COPD) to respiratory infections, which are common causes of acute exacerbations of COPD (AECOPD). To understand the underlying mechanisms, we assessed regulatory T (Treg) cells and the expression of an inhibitory T‐cell receptor, cytotoxic T‐lymphocyte‐associated antigen 4 (CTLA‐4). Cryopreserved peripheral blood mononuclear cells (PBMC) from patients with AECOPD (n = 17), patients with stable COPD (sCOPD; n = 24) and age‐matched healthy non‐smoking controls (n = 26) were cultured for 24 hr with brefeldin‐A or monensin to detect intracellular or surface CTLA‐4 (respectively) by flow cytometry. T cells in PBMC from AECOPD (n = 9), sCOPD (n = 14) and controls (n = 12) were stimulated with anti‐CD3 with and without anti‐CTLA‐4 blocking antibodies and cytokines were quantified by ELISA. Frequencies of circulating T cells expressing intracellular CTLA‐4 were higher in sCOPD (P = 0·01), whereas patients with AECOPD had more T cells expressing surface CTLA‐4 than healthy controls (P = 0·03). Increased frequencies of surface CTLA‐4+ CD4+ T cells and CTLA‐4+ Treg cells paralleled increases in plasma soluble tumour necrosis factor receptor‐1 levels (r = 0·32, P = 0·01 and r = 0·29, P = 0·02, respectively) in all subjects. Interferon‐γ responses to anti‐CD3 stimulation were inversely proportional to frequencies of CD4+ T cells expressing intracellular CTLA‐4 (r = −0·43, P = 0·01). Moreover, CTLA‐4 blockade increased the induction of interferon‐γ, tumour necrosis factor‐α and interleukin‐6 in PBMC stimulated with anti‐CD3. Overall, chronic inflammation may expand sub‐populations of T cells expressing CTLA‐4 in COPD patients and therefore impair T‐cell function. CTLA‐4 blockade may restore Th1 function in patients with COPD and so aid the clearance of bacterial pathogens responsible for AECOPD.  相似文献   

8.
Aim: The role of the kidney endothelin system in the renal regulation of fluid and electrolyte excretion was investigated in Wistar–Kyoto (WKY) and Long–Evans (LE) rats in which we found previously marked differences in the renal excretory responses to endothelin A receptor blockade. Methods: The selective endothelin A and B receptor antagonists BQ‐123 (16.4 nmol kg−1 min−1) and BQ‐788 (25 nmol kg−1 min−1) were infused i.v. for 50 min in conscious chronically instrumented WKY and LE rats and their renal function and renal endothelin system were studied. Results: Without effects on glomerular filtration rate or renal blood flow, BQ‐123 and BQ‐788 decreased by more than 50% (P < 0.01) both urine flow rate and electrolyte excretion in WKY rats but only urine flow rate (P < 0.05) in LE rats. Endothelin‐1 content, preproET‐1/GPDH mRNA ratio, Bmax and Kd of total endothelin receptors in renal cortex did not differ between the two strains. In contrast, plasma endothelin‐1 concentration (0.58 ± 0.04 vs. 1.05 ± 0.01 femtomol mL−1; P < 0.01), renal papillary ET‐1 concentration (68 ± 5 vs. 478 ± 62 fmol mg−1 protein; P < 0.01) and preproET‐1/GPDH mRNA ratio (0.65 ± 0.09 vs. 0.88 ± 0.05; P < 0.05) as well as total endothelin receptor number in renal papilla (Bmax 5.3 ± 0.4 vs. and 9.0 ± 1.2 pmol mg−1 protein; P < 0.05) were markedly lower in LE than in WKY rats. In vitro studies showed that in both strains ETB receptors on renal cortical membranes amounted between 65% and 67% and on papillary membranes between 85% and 88%. Conclusion: The present data show that the selective ETA or ETB receptor blockade differentially affects tubular water and salt handling, which becomes apparent in conditions of low renal papillary endothelin receptor number and tissue endothelin‐1 concentration.  相似文献   

9.
Alpha‐melanocyte stimulating hormone (α‐MSH) is a neuropeptide exhibiting anti‐inflammatory activity in experimental models of autoimmune diseases. However, no studies thus far have examined the effects of α‐MSH on systemic lupus erythematosus (SLE). This study aimed to determine the effects of an α‐MSH agonist in induced murine lupus. Here we employed female Balb/cAn mice in which lupus was induced by pristane. Groups of lupus animals were treated daily with the α‐MSH analogue [Nle4, DPhe7]‐α‐MSH (NDP–MSH) (1·25 mg/kg) injected intraperitoneally or saline for 180 days. Normal animals comprised the control group. Arthritis incidence, plasma immunoglobulin (Ig)G isotypes, anti‐nuclear antibodies (ANA) and plasma cytokines were evaluated. Renal function was assessed by proteinuria and histopathological lesion. Glomerular levels of IgG, α‐smooth muscle actin (α‐SMA), inducible nitric oxide synthase (iNOS), C3, CD3, melanocortin receptors (MCR)1, corticotrophin‐releasing factor (CRF) and α‐MSH was estimated by immunohistochemistry. When compared with normal controls, lupus animals exhibited increased arthritis, IgG levels, ANA, interleukin (IL)‐6, IL‐10, proteinuria and mesangial cell proliferation together with glomerular expression of α‐SMA and iNOS. Glomerular expression of MCR1 was reduced in lupus animals. NDP‐MSH treatment reduced arthritis scores by 70% and also diminished IgG1 and IgG2a levels and ANA incidence. In the glomerulus, NDP–MSH treatment reduced cellularity by 50% together with reducing IgG deposits, and expression levels of α‐SMA, iNOS and CRF were also all decreased. Taken together, our results suggest for the first time that α‐MSH treatment improves several parameters of SLE disease activity in mice, and indicate that this hormone is an interesting potential future treatment option.  相似文献   

10.
With UV–vis absorption in the range of 270–435 nm, 4‐(N,N‐diphenylamino)benzaldehyde (DPAB) takes efficient photoreduction quench with 4‐cynao‐4‐(phenylcarbonothioylthio)pentanoic acid (CTP). The polymerization rates of methyl methacrylate (MMA) are 0.019, 0.056, and 0.102 h?1 at 33, 40, and 50 °C, respectively, in the presence of DPAB and CTP under visible‐light irradiation. Dark reaction produces no PMMA at 50 °C for 120 h. The living feature is demonstrated by linearly increasing Mn with the monomer conversions and narrow polydispersity index (PDI), chain extension, and block polymerizations with benzyl methacrylate (BnMA) and poly(ethylene glycol) monomethyl ether methacrylate (PEGMA). With PMMA‐CTP (Mn = 6800, PDI = 1.17), chain extension gives PMMA with Mn = 15 900 and PDI = 1.15. With PMMA‐CTP (Mn = 6000, PDI = 1.21) as macro‐RAFT, PMMA‐b‐PBnMA of Mn = 12 600 (PDI = 1.44) and Mn = 18 500 (PDI = 1.31) are prepared. These results support that there is a positive synergistic effect between polymerization temperature and visible‐light irradiation on the photo‐RAFT without losing the living features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号