首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
To determine the receptor binding properties of various H9 influenza virus escape mutants in the presence and absence of antibody, sialyloligosaccharides conjugated with biotinylated polyacrylamide were used. A mutant virus with a L226Q substitution showed an increased affinity for the Neu5Acalpha2-3Galbeta1-4Glc. Several escape mutants viruses carrying the mutation N193D bound to Neu5Acalpha2-6Galbeta1-4GlcNAc considerably stronger than to Neu5Acalpha2-6Galbeta1-4Glc. Several monoclonal antibodies unable to neutralize the escape mutants preserved the ability to bind to the hemagglutinin as revealed by enzyme-linked immunosorbent assay. In each case, the bound monoclonal antibodies did not prevent the binding of the mutant HA to high affinity substrates and did not displace them from the virus binding sites. Together, these data suggest that amino acid changes selected by antibody pressure may be involved in the specificity of host-cell recognition by H9 hemagglutinin and in the ability of viruses with these mutations to escape the neutralizing effect of antibodies in a differential way, depending on the specificity of the host cell receptor. It may be important in the natural evolution of the H9 subtype, a plausible candidate for the agent likely to cause a future pandemic.  相似文献   

2.
The present studies demonstrate that infusion of a type B specific lectin derived from the mushroom Marasmius oreades (MOA) into mice binds selectively to the glomerular endothelial cells via surface carbohydrate moieties resulting in cell injury and death associated with platelet-fibrin thrombi. This selective MOA binding to the endothelial cells can be abrogated by a sugar specific for the carbohydrate sequence. Hemolytic-Uremic Syndrome (HUS) and the closely associated Thrombotic Thrombocytopenic Purpura (TTP) are diseases associated with widespread microvascular injury in various organs. Clinically, these diseases are associated with microangiopathic hemolytic anemia and thrombocytopenia. The kidney glomerulus is a primary target of this microvascular injury. There are many underlying etiologies including bacterial toxins. Experimentally, such toxins injure endothelial cells in vitro but in vivo studies have failed to reproduce the characteristic renal pathology. We suggest that MOA-induced glomerular microangiopathic injury could be used to study the pathophysiology of endothelial cell injury as related to glomerular microangiopathic injury.  相似文献   

3.
Liposomes could bind and fuse efficiently to human erythrocytes in the presence of HVJ when they contained gangliosides isolated from human erythrocytes. Sialosylparagloboside, which has a terminal sequence of NeuAcα2?3Ga1β1?4GlcNac, has a much higher receptor activity to the virus than GD1a, GD1b, GT1b, and GT1a, all of which contain the terminal sequence of NeuAcα2?3Galβ1?3GalNAc or NeuAcα2?8NeuAcα2?3Galβ1?3GalNAc. The activity of sialosylparagloboside is comparable to that of glycophorin, a major sialoglycoprotein of human erythrocytes, when compared on the basis of the required amount (as sialic acid) of compounds. The high affinity of sialosylparagloboside to the viral HANA protein is also suggested by the finding that it showed high inhibitory activity against HVJ-mediated binding of glycophorin liposomes to erythrocytes. Sialosylparagloboside was also highly susceptible to the viral sialidase, the other biological function of HANA protein.  相似文献   

4.
beta-N-Acetylglucosaminidase secreted by Entamoeba histolytica was extracted from the growth medium by affinity chromatography on CH-Sepharose 4 B coupled to p-aminophenyl-1-thio-beta-2-acetamido-2-deoxyglucopyranoside. The enzyme was further purified by isoelectric focusing, by sequential chromatography on DEAE-cellulose and Sephadex G-150, and by preparative disc gel electrophoresis. Chitobiose (betaGlcNAc1-4GlcNAc) derived from chitin as well as the oligosaccharides betaGlcNAc1-4 betaGlcUA1-3GlcNAc, betaGlcNAc1-4 betaGlcUA1-3 betaGlcAc1-4GlcUA, and betaGlcNAc1-4 betaGlc-UA1-3 betaGlcNAc1-4 betaGlcUA1-3 betaGlcNAc1-4GlcUA derived from hyaluronic acid were tested as potential physiological substrates. All these oligosaccharides are susceptible to action of beta-N-acetylglucosaminidase from E. histolytica. Under identical conditions chitobiose is cleaved 38-48 times faster than hyhyauronate oligosaccharides. No release of N-acetylglucosamine was observed when glycopeptides from ovalbumin were used as substrate. The pH optimum of hydrolase activity was 4.5 when chitobiose was used as substrate. Optimal hydrolysis of aluronate oligosaccharides was observed at pH 3.0 for trisaccharide and pH 2.0 for tetra- and hexasaccharide, respectively. Estimation of molecular weight by means of gel filtration gave values of 75 000. The isoelectric point was 5.02 beta-N-Acetylglucosaminidase from E. histolytica does not act on macromolecular chitin and hyaluronic acid.  相似文献   

5.
Previously we have described studies on in vitro pentamer assembly of Escherichia coli (E. coli) derived heat-labile enterotoxin B subunit (EtxB) using conventional monoclonal antibodies (Amin et al., JBC 1995: 270, 20143-50 and Chung et al., JBC 2006: 281, 39465-70). To extend these studies further we have used phage-display to select single-chain Fragment variable (scFv) antibodies against different forms of the B-subunit. Two clones exhibiting strong and differential binding were chosen for detailed characterization. A comprehensive sequence analysis was performed to assign the framework and complementary-determining regions and a nonsense mutation present in one of these (scFv-B1.3.9) was corrected. Binding analysis showed that scFv-B1.3.9 bound in ELISA to both heat-denatured monomeric B-subunits (EtxB1) and also displayed cross-reactivity towards pentameric EtxB (EtxB5), although there was no reactivity towards monoganglioside (GM1) captured EtxB5. Another antibody (scFv-B5.2.14) had a different reactivity profile and, in ELISA, bound only to EtxB5 but not to EtxB1 or to EtxB5 captured via GM1. Surprisingly, in competition experiments, the assembled pentameric B-subunit inhibited binding of scFv-B5.2.14 to immobilized EtxB5 only weakly, whereas reduced, but not oxidized, monomeric EtxB1 was an efficient competitor. These results clearly demonstrate that B1.3.9 and B5.2.14 have different specificities for cryptic epitopes not accessible in the fully assembled GM1 bound pentameric form of EtxB.Taken together our results show that we were able to successfully isolate and characterize recombinant scFvs that differentially recognize diverse denatured forms or assembly intermediates of the heat-labile enterotoxin B subunit of E. coli.  相似文献   

6.
The Fc region of IgG antibodies, important for effector functions such as antibody-dependent cell-mediated cytotoxicity, antibody-dependent cellular phagocytosis and complement activation, contains an oligosaccharide moiety covalently attached to each CH2 domain. The oligosaccharide not only orients the CH2 domains but plays an important role in influencing IgG effector function, and engineering the IgG-Fc oligosaccharide moiety is an important aspect in the design of therapeutic monoclonal IgG antibodies. Recently we reported the crystal structure of glycosylated IgG4-Fc, revealing structural features that could explain the anti-inflammatory biological properties of IgG4 compared with IgG1. We now report the crystal structure of enzymatically deglycosylated IgG4-Fc, derived from human serum, at 2.7 Å resolution. Intermolecular CH2-CH2 domain interactions partially bury the CH2 domain surface that would otherwise be exposed by the absence of oligosaccharide, and two Fc molecules are interlocked in a symmetric, open conformation. The conformation of the CH2 domain DE loop, to which oligosaccharide is attached, is altered in the absence of carbohydrate. Furthermore, the CH2 domain FG loop, important for Fcγ receptor and C1q binding, adopts two different conformations. One loop conformation is unique to IgG4 and would disrupt binding, consistent with IgG4's anti-inflammatory properties. The second is similar to the conserved conformation found in IgG1, suggesting that in contrast to IgG1, the IgG4 CH2 FG loop is dynamic. Finally, crystal packing reveals a hexameric arrangement of IgG4-Fc molecules, providing further clues about the interaction between C1q and IgG.  相似文献   

7.
Among serotonin (5-HT) receptors, the 5-HT3 receptor is the only ligand-gated ion-channel. Little is known about the interaction between the 5-HT3 receptor and other 5-HT receptors and influence of 5-HT3 chronic activation on other 5-HT receptors and the expression of key genes of 5-HT system. Chronic activation of 5-HT3 receptor with intracerebroventricularly administrated selective agonist 1-(3-chlorophenyl)biguanide hydrochloride (m-CPBG) (14 days, 40 nmol, i.c.v.) produced significant desensitization of 5-HT3 and 5-HT1A receptors. The hypothermic responses produced by acute administration of selective agonist of 5-HT3 receptor (m-CPBG, 40 nmol, i.c.v.) or selective agonist of 5-HT1A receptor (8-hydroxy-2-(di-n-propylamino)tetralin) (8-OH-DPAT, 1 mg/kg, i.p.) was significantly lower in m-CPBG treated mice compared with the mice of control groups. Chronic m-CPBG administration failed to induce any significant change in the 5-HT2A receptor functional activity and in the expression of the gene encoding 5-HT2A receptor. Chronic activation of 5-HT3 receptor produced no considerable effect on the expression on 5-HT3, 5-HT1A, and 5-HT transporter (5-HTT) and tryptophan hydroxylase-2 (TPH-2) genes – the key genes of brain 5-HT system, in the midbrain, frontal cortex and hippocampus. In conclusion, chronic activation of ionotropic 5-HT3 receptor produced significant desensitization of 5-HT3 and postsynaptic 5-HT1A receptors but caused no considerable changes in the expression of key genes of the brain 5-HT system.  相似文献   

8.
9.
Sushma A. Ogram 《Virology》2010,397(1):14-22
In this study, we showed that the 5′CL-PCBP complex, 3′ poly(A) tail and viral protein 2Apro are all required for optimal translation of PV RNA. The 2Apro-mediated stimulation of translation was observed in the presence or absence of both the 5′CL and the 3′ poly(A) tail. Using protein-RNA tethering, we established that the 5′CL-PCBP complex is required for optimal viral RNA translation and identified the KH3 domain of PCBP2 as the functional region. We also showed that the 5′CL-PCBP complex and the 3′ poly(A) tail stimulate translation independent of each other. In addition to the independent function of each element, the 5′CL and the 3′ poly(A) tail function synergistically to stimulate and prolong translation. These results are consistent with a model in which the 5′CL-PCBP complex interacts with the 3′ poly(A)-PABP complex to form a 5′-3′ circular complex that facilitates ribosome reloading and stimulates PV RNA translation.  相似文献   

10.
Lethal mutagenesis, a new antiviral strategy to extinguish virus through elevated mutation rates, was explored in H61-D cells an HIV-1 persistently infected lymphoid cell line. Three mutagenic agents: 5-hydroxy-2-deoxycytidine (5-OHdC), 5-fluorouracil (5-FU) and 2,2-difluoro-2-deoxycytidine (gemcitabine) were used. After 54 passages, treatments with 5-FU and gemcitabine reduced virus infectivity, p24 and RT activity. Treatment with the pyrimidine analog 5-OHdC resulted in increases of p24 production, RT activity and infectivity. Rise in viral replication by 5-OHdC during HIV-1 persistence is in contrast with its inhibitory effect in acute infections. Viral replication enhancement by 5-OHdC was associated with an increase in intracellular HIV-1 RNA mutations. Mechanisms of HIV-1 replication enhancement by 5-OHdC are unknown but some potential factors are discussed. Increase of HIV-1 replication by 5-OHdC cautions against the use, without previous analyses, of mutagenic nucleoside analogs for AIDS treatment.  相似文献   

11.
Vascular endothelial growth factor (VEGF) and neuroglobin (Ngb) participate in neuronal responses to hypoxia and ischemia, but the relationship between their effects, if any, is unknown. To address this issue, we measured Ngb levels in VEGF-treated mouse cerebrocortical cultures and VEGF levels in cerebrocortical cultures from Ngb-overexpressing transgenic mice. VEGF stimulated Ngb expression in a VEGFR2/Flk1 receptor-dependent manner, whereas Ngb overexpression suppressed expression of VEGF. These findings provide further insight into hypoxia-stimulated neuronal signaling pathways.  相似文献   

12.
Ovarian primary mucinous tumours (OPMTs) show an adenoma–borderline–carcinoma sequence with gastrointestinal metaplasia. Gastric gland mucin-specific O-glycans are unique with an α1,4-linked N-acetylglucosamine (αGlcNAc) residue attached to mucin 6 (MUC6). Although αGlcNAc is expected to be expressed in OPMTs, the relationship between αGlcNAc expression and OPMT progression remains unknown. Here, we analysed 104 areas of benign mucinous tumours (benign), 55 areas of borderline mucinous tumours (borderline), and 18 areas of malignant mucinous tumours (malignant) to investigate the expression patterns of αGlcNAc, mucin 2 (MUC2), mucin 5AC (MUC5AC), and MUC6 during the progression of OPMT from benign to malignant. MUC5AC expression was observed in all areas. The frequencies of MUC6- and αGlcNAc-positive areas were decreased with tumour progression. In particular, the decrease in αGlcNAc-positive areas was remarkable. Furthermore, αGlcNAc expression was lower than MUC6 expression at all grades (benign, p < 0.0001; borderline, p = 0.0014; malignant, p = 0.0039). Conversely, there was no difference in the expression frequency or level of MUC2 among the three grades. These results suggest that decreased expression of αGlcNAc relative to MUC6 occurs early in tumour development and marks the initiation of OPMT progression.  相似文献   

13.
Human cannabinoid receptors 1 (hCB(1)R) and 2 (hCB(2)R) are expressed in the CNS and couple to G(i)/G(o)-proteins. The aim of this study was to compare coupling of hCB(1)R and hCB(2)R to G(alpha)(i2)beta(1)gamma(2) in Sf9 insect cells. High-affinity agonist binding at hCB(1)R, but not at hCB(2)R, was resistant to guanine nucleotides. hCB(1)R activated G(alpha)(i2)beta(1)gamma(2) much more rapidly than hCB(2)R in the [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTPgammaS) binding assay. Moreover, hCB(1)R exhibited a higher constitutive activity than hCB(2)R as assessed by the relative inhibitory effects of inverse agonists on [(35)S]GTPgammaS binding and steady-state high-affinity GTPase activity compared to the stimulatory effects of the hCB(1/2)R agonist CP 55,940 [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol]. G(alpha)(i2)beta(1)gamma(2) coupled to hCB(2)R exhibited higher GDP- and GTPgammaS-affinities than G(alpha)(i2)beta(1)gamma(2) coupled to hCB(1)R. NaCl effectively reduced constitutive activity of hCB(1)R but not of hCB(2)R. Collectively, hCB(1)R and hCB(2)R couple differentially to G(alpha)(i2)beta(1)gamma(2). Moreover, hCB(1)R exhibits higher constitutive activity than hCB(2)R. These differences point to distinct functions of hCB(1)R and hCB(2)R in the CNS.  相似文献   

14.
15.
The opium alkaloid papaverine (PPV) causes vasodilatation of the cerebral arteries through direct action on smooth muscle that reduces the constriction of smooth muscle. Intra-arterial papaverine (IAP) has been used widely to increase the regional cerebral blood flow in order to reverse the cerebral vasospasm that occurs during endovascular procedures. IAP-induced seizures have been reported, although PPV has anticonvulsive effects. This study determined the effects of IAP on electrocorticography (ECoG) in the ketamine anesthetized rats. We used 24 Sprague–Dawley male rats weighing 200–250 g. The animals were divided randomly into four groups: three treatment groups (groups 1–3) and a control (group 4). Groups 1, 2, and 3 were given 1, 7, and 14 mg/kg IAP, respectively. The ECoG was compared across groups. Our results indicated that IAP did not cause seizures and that it decreased the frequency of ketamine-induced epileptiform activity in the 14 mg/kg group.  相似文献   

16.
Serotonin 5-HT1A receptor agonist 8-OH DPAT suppressed drinking behavior in Brattleboro and Wistar rats. 5-HT1B agonist CGS-12066A and 5-HT2A antagonist ketanserin did not affect drinking behavior in Brattleboro rats; 5-HT3 antagonist ondansetron suppressed water consumption and 5-HT1A agonist stimulated salt appetite in Brattleboro, but not in Wistar rats. Presumably, vasopressin regulates thirst and salt appetite by modulating sensitivity/density of various types of 5-HT receptors.  相似文献   

17.
An in vivo approach was taken to assess the biological significance of heparin-binding EGF-like growth factor (HB-EGF) using transgenic mice. Transgenic mice were generated using the pIRES-EGFP vector expressing a bicistronic mRNA containing both human HB-EGF (hHB-EGF) and enhanced green fluorescent protein (EGFP) coding sequences under the regulation of the cytomegalovirus immediate–early (CMV-IE) promoter. As a marker for transgene expression, EGFP fluorescence in 5?μm tissue sections was evaluated. To confirm HB-EGF expression in EGFP-containing tissues, HB-EGF mRNA was analyzed by RT-PCR and Northern blot analysis. Protein levels of HB-EGF and insulin-like growth factor binding protein-3 (IGFBP-3), a molecule that stabilizes IGFs, which in turn helps to promote growth, were analyzed by Western blot. Also, the weights of transgenic mice were compared with the weights of wild type non-transgenic littermates over a 10-week period. EGFP fluorescence, RT-PCR and Northern analysis of a variety of tissues from hHB-EGF transgenic mice indicate recombinant EGFP/hHB-EGF mRNA expression in kidney, liver, lung and stomach. Western blot analysis confirmed that HB-EGF protein levels were greater in these tissues from hHB-EGF transgenic mice compared to wild type non-transgenic littermates. IGFBP-3 protein was absent in serum of transgenic mice prior to the onset of puberty, but indistinguishable from wild type non-transgenic mice after puberty. Furthermore, IGFBP-3 and IGFBP-4 mRNA were downregulated in the kidney, but not liver or lung of the transgenic mice. In accordance with reduced IGFBP-3 and -4 levels, hHB-EGF transgenic mice exhibited a 20% decrease in weight prior to 6 weeks of age compared to wild type non-transgenic littermates. Our laboratory has generated a biologically functional transgenic mouse model exhibiting increased expression of hHB-EGF in kidney, liver, lung and stomach. Overexpression of hHB-EGF affected the growth rate of these transgenic mice possibly through a pathway involving IGFBP-3 and IGFBP-4.  相似文献   

18.
Prostaglandin E2 (PGE2) is considered to be a key mediator in migraine pathophysiology. PGE2 acts via four receptors (EP1-EP4) but their distribution in the brain districts implicated in migraine has yet to be delineated. We quantified amount of mRNA and protein expression for the EP receptors in both peripheral and central structures involved in pain transmission and perception in migraine: dura mater, cerebral arteries, trigeminal ganglion, trigeminal nucleus caudalis, periaqueductal grey, thalamus, hypothalamus, cortex, pituitary gland, hippocampus and cerebellum. In the trigeminal-vascular system (TVS) we found highest expression of EP1 and EP2 protein in the trigeminal nucleus caudalis. EP3 and EP4 mRNA expression were highest in the trigeminal ganglion. Within intracranial structures EP1 mRNA and protein expression were significantly higher in pituitary gland and cerebellum than in dorsal root ganglia (peripheral control), whereas the EP2 mRNA and protein were highly abundant in the pituitary gland. EP3 mRNA was mainly found in thalamus and hypothalamus. The most robust mRNA and protein expression for EP4 receptor was seen in the dorsal root ganglion. In conclusion, all four receptors are located in areas implicated in migraine supporting the possible involvement of PGE2 in this disease.  相似文献   

19.
20.
Calcium signals are crucial for diverse cellular functions including adhesion, differentiation, proliferation, effector functions and gene expression. After engagement of the B cell receptor, the intracellular calcium ion (Ca2+) concentration is increased promoting the activation of various signaling cascades. While elevated Ca2+ in the cytosol initially comes from the endoplasmic reticulum (ER), a continuous influx of extracellular Ca2+ is required to maintain the increased level of cytosolic Ca2+. Store-operated Ca2+ entry manages this process, which is regulated by an ER calcium sensor, stromal interaction molecule (STIM). STIM proteins sense changes in the levels of Ca2+ stored within the ER lumen and regulates the Ca2+-release activated Ca2+ channel in the plasma membrane. This review focuses on the signaling pathways leading to Ca2+ influx and the role of Ca2+ signals in B cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号