首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
Brain microvascular endothelial cells (BMVEC) connected by tight junctions (TJ) form a tight monolayer at the blood-brain barrier (BBB). We investigated the idea that BBB dysfunction seen in alcohol abuse is associated with oxidative stress stemming from ethanol (EtOH) metabolism in BMVEC. Exposure to EtOH induced catalytic activity/expression of EtOH-metabolizing enzymes, which paralleled enhanced generation of reactive oxygen species (ROS). EtOH-mediated oxidative stress led to activation of myosin light chain (MLC) kinase, phosphorylation of MLC and TJ proteins, decreased BBB integrity, and enhanced monocyte migration across BBB. Acetaldehyde or ROS donors mimicked changes induced by EtOH in BMVEC. Thus, oxidative stress resulting from alcohol metabolism in BMVEC can lead to BBB breakdown in alcohol abuse, serving as an aggravating factor in neuroinflammatory disorders.  相似文献   

2.
Oxidants are important signaling molecules known to increase endothelial permeability. Studies implicate reactive oxygen species (ROS) and the intrinsic apoptotic signaling cascades as mediators of vascular hyperpermeability. Here we report the protective effects of ulinastatin, a serine protease inhibitor with antiapoptotic properties, against oxidant-induced endothelial monolayer hyperpermeability. HUVECs were respectively pretreated with 10,000 and 50,000 u/l ulinastatin, followed by stimulation of 0.6 mM H2O2. Monolayer permeability was determined by transendothelial electrical resistance (TER); Mitochondrial release of cytochrome c was determined by enzyme-linked immunosorbent assay; Caspase-3 activity was measured by fluorometric assay; Adherens junction protein β-catenin was detected by immunofluorescense staining; Ratio of cell apoptosis was evaluated by Annexin-V/PI double stain assay; Mitochondrial membrane potential (Δψm) was determined with JC-1; Intracellular ATP content was assayed by a commercial kit; Bax and Bcl-2 expression were estimated by western blotting; Intracellular reactive oxygen species (ROS) level was measured by DCFH-DA. H2O2 exposure resulted in endothelial hyperpermeability and ROS formation (P < 0.05). The activation of mitochondrial intrinsic apoptotic signaling pathway was evidenced from BAX up-regulation, Bcl-2 down-regulation, mitochondrial depolarization, an increase in cytochrome c release, and activation of caspase-3 (P < 0.05). UTI (50,000 u/l) attenuated endothelial hyperpermeability, ROS formation, mitochondrial dysfunction, cytochrome c release, activation of caspase-3, and disruption of cell adherens junctions (P < 0.05). Together, these results demonstrate that UTI provides protection against vascular hyperpermeability by modulating the intrinsic apoptotic signaling.  相似文献   

3.
Jung Y  Song S  Choi C 《Immunology letters》2008,117(1):63-69
In this study, we investigated the anti-inflammatory effect of various peroxisome proliferator activated receptor gamma (PPARgamma) agonists (15-deoxy-Delta12,14-prostaglandin J(2), troglitazone, rosiglitazone, ciglitazone) on human aortic endothelial cells. Pretreatment with PPARgamma agonists abrogated tumor necrosis factor alpha (TNFalpha)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and subsequent monocytic adhesion by endothelial cells. Because reactive oxygen species (ROS) have been reported to play important roles in pro-inflammatory signal transduction, the involvement of ROS was investigated as a potential mechanism of anti-inflammatory effect of PPARgamma ligands. Consistent with previous reports in other cell types, blockade of TNFalpha-induced ROS by treatment with N-acetylcysteine, diphenylene iodonium or NADPH oxidase 4 (NOX4) siRNA suppressed TNFalpha-induced ICAM-1 expression and subsequent monocytic adhesion, indicating that TNFalpha mediates pro-inflammatory signals via NOX4-dependent ROS generation in human endothelial cells. Finally, pretreatment with PPARgamma agonists significantly suppressed TNFalpha-induced increases of intracellular ROS. Our results collectively suggest that PPARgamma agonists might exert an anti-inflammatory effect on endothelial cells in a ROS-dependent manner.  相似文献   

4.
Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic signaling cascade. Rat lung microvascular endothelial cells (RLMVECs) were pretreated with propofol at various concentrations, followed by stimulation with burn serum, obtained from burn-injury rats. Monolayer permeability was determined by transendothelial electrical resistance. Mitochondrial release of cytochrome C was measured by ELISA. Bax and Bcl-2 expression and mitochondrial release of second mitochondrial-derived activator of caspases (smac) were detected by Western blotting. Caspase-3 activity was assessed by fluorometric assay; mitochondrial membrane potential (Δψm) was determined with JC-1 (a potential-sensitive fluorescent dye). Intracellular ATP content was assayed using a commercial kit, and reactive oxygen species (ROS) were measured by dichlorodihydrofluorescein diacetate (DCFH-DA). Burn serum significantly increased monolayer permeability (P<0.05), and this effect could be inhibited by propofol (P<0.05). Compared with a sham treatment group, intrinsic apoptotic signaling activation - indicated by Bax overexpression, Bcl-2 downregulation, Δψm reduction, decreased intracellular ATP level, increased cytosolic cytochrome C and smac, and caspase-3 activation - was observed in the vehicle group. Propofol not only attenuated these alterations (P<0.05 for all), but also significantly decreased burn-induced ROS production (P<0.05). Propofol attenuated burn-induced RLMVEC monolayer hyperpermeability by regulating the intrinsic apoptotic signaling pathway.  相似文献   

5.
Exposure to particulate air pollution is associated with increased cardiopulmonary morbidity and mortality, although the pathogenic mechanisms are poorly understood. We previously demonstrated that particulate matter (PM) exposure triggers massive oxidative stress in vascular endothelial cells (ECs), resulting in the loss of EC integrity and lung vascular hyperpermeability. We investigated the protective role of hydrogen sulfide (H(2)S), an endogenous gaseous molecule present in the circulation, on PM-induced human lung EC barrier disruption and pulmonary inflammation. Alterations in EC monolayer permeability, as reflected by transendothelial electrical resistance (TER), the generation of reactive oxygen species (ROS), and murine pulmonary inflammatory responses, were studied after exposures to PM and NaSH, an H(2)S donor. Similar to N-acetyl cysteine (5 mM), NaSH (10 μM) significantly scavenged PM-induced EC ROS and inhibited the oxidative activation of p38 mitogen-activated protein kinase. Concurrent with these events, NaSH (10 μM) activated Akt, which helps maintain endothelial integrity. Both of these pathways contribute to the protective effect of H(2)S against PM-induced endothelial barrier dysfunction. Furthermore, NaSH (20 mg/kg) reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in bronchoalveolar lavage fluids in a murine model of PM-induced lung inflammation. These data suggest a potentially protective role for H(2)S in PM-induced inflammatory lung injury and vascular hyperpermeability.  相似文献   

6.
目的:观察在常氧、短暂缺氧、持续缺氧及复氧条件下,辛伐他汀对大鼠脑微血管内皮细胞(BMECs)跨内皮细胞电阻(TEER)及基质金属蛋白酶-9(MMP-9)表达的影响。方法:原代分离培养SD大鼠BMECs,随机分为常氧组、短暂缺氧组、持续缺氧组、复氧组,各组均实施辛伐他汀0.1μmol/L、1.0μmol/L、10μmol/L3种浓度预处理。观察各组细胞形态学及增殖活性变化;采用TEER评估各组通透性;免疫细胞荧光化学法测定MMP-9蛋白表达。结果:短暂缺氧、持续缺氧及复氧条件下大鼠BMECs细胞受损逐渐加重,MMP-9表达逐渐增加,TEER及细胞增殖活性逐渐下降。辛伐他汀干预能不同程度提高TEER并抑制MMP-9蛋白的表达,使细胞增殖活性提高。但这种抑制MMP-9的作用对短暂缺氧大鼠BMECs的TEER值及细胞增殖活性无显著改善。结论:辛伐他汀能通过抑制MMP-9蛋白的表达来提高持续缺氧及复氧条件下大鼠BMECs的TEER,而对短暂缺氧后TEER的改善作用不明显。  相似文献   

7.
目的研究3种不同磁性纳米颗粒对体外培养的血管内皮细胞中活性氧(reactive oxygen species,ROS)水平和细胞间连接的影响,探讨二者之间的关联性。方法将原代人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)随机分为对照组和不同磁性纳米颗粒暴露组。利用动态光散射(dynamic light scattering,DLS)对纳米颗粒的粒径和电势进行表征;采用细胞计数试剂盒(cell counting Kit-8,CCK-8)法测定细胞活性;通过二氯二氢荧光素-乙酰乙酸酯(2',7'-dichlorofluorescin diacetate,DCFH-DA)荧光探针标记和流式细胞术检测细胞中ROS水平;利用普鲁士蓝染色和透射电镜方法观察内皮细胞对磁性纳米颗粒的摄取。对细胞表面血管内皮钙黏蛋白(vascular endothelial cadherin,VE-cadherin)进行免疫荧光标记,在激光共聚焦显微镜下观察细胞间连接,并通过Western blot检测VE-cadherin表达水平。结果磁性纳米颗粒能诱导内皮细胞内ROS水平上升,降低VE-cadherin表达水平,细胞间缝隙增大。抗氧化剂N-乙酰半胱氨酸处理可使ROS水平下降并减少细胞缝隙。由于组分、表面修饰、尺寸等因素不同,磁性纳米颗粒对内皮细胞活性、ROS水平及VE-cadherin产生不同程度的影响。结论不同磁性纳米颗粒对内皮细胞活性氧和细胞间连接的影响不同;在实验所采用的低剂量暴露下可影响内皮细胞连接的完整性。  相似文献   

8.
Fabry disease, an X-linked systemic vasculopathy, is caused by a deficiency of alpha-galactosidase A resulting in globotriaosylceramide (Gb(3)) storage in cells. The pathogenic role of Gb(3) in the disease is not known. Based on previous work, we tested the hypothesis that accumulation of Gb(3) in the vascular endothelium of Fabry disease is associated with increased production of reactive oxygen species (ROS) and increased expression of cell adhesion molecules. Gb(3)-loading resulted in increased intracellular ROS production in cultured vascular endothelial cells in a dose-dependent manner. Increased Gb(3) also induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin. Reduction of endogenous Gb(3) by treatment of the cells with an inhibitor of glycosphingolipid synthase or alpha-galactosidase A led to decreased expression of adhesion molecules. Plasma from Fabry patients significantly increased ROS generation in endothelial cells when compared with plasma from non-Fabry controls. This effect was not influenced by reduction of intracellular Gb(3). This study provided direct evidence that excess intracellular Gb(3) induces oxidative stress and up-regulates the expression of cellular adhesion molecules in vascular endothelial cells. In addition, other factors in patient's plasma may also contribute to oxidative stress in Fabry vascular endothelial cells.  相似文献   

9.
Oxidative stress plays critical roles in initiation and/or worsening of respiratory disease process. Although reactive oxygen species (ROS) are shown to cause vascular leakage, the mechanisms by which ROS induce an increase in vascular permeability are not clearly understood. In this study, we have used a murine model to evaluate the effect of hydrogen peroxide (H(2)O(2)) to examine roles of ROS and the molecular mechanism in vascular permeability. The results have revealed that ROS levels, vascular endothelial growth factor (VEGF) expression, hypoxia-inducible factor-1alpha protein level, airway hyperresponsiveness, and vascular permeability are increased after inhalation of H(2)O(2). Administration of antioxidants markedly reduced plasma extravasation and VEGF levels in lungs treated with H(2)O(2). These results indicate that ROS may modulate vascular permeability via upregulation of VEGF expression.  相似文献   

10.
Artemisinin is widely used as an agent to treat malaria; the possible antiangiogenic effects of this compound are unknown. In the present study, the antiangiogenic effects of artemisinin were investigated in mouse embryonic stem cell-derived embryoid bodies, which are a model system for early postimplantation embryos and which efficiently differentiate capillaries. Artemisinin dose dependently inhibited angiogenesis in embryoid bodies and raised the level of intracellular reactive oxygen species. Furthermore impaired organization of the extracellular matrix component laminin and altered expression patterns of matrix metalloproteinases 1, 2, and 9 were observed during the time course of embryoid body differentiation. Consequently accelerated penetration kinetics of the fluorescent anthracycline doxorubicin occurred within the tissue, indicating increased tissue permeability. Artemisinin down-regulated hypoxia-inducible factor-1alpha and vascular endothelial growth factor (VEGF) expression, which control endothelial cell growth. The antiangiogenic effects and the inhibition of hypoxia-inducible factor-1alpha and VEGF were reversed upon cotreatment with the free radical scavengers mannitol and vitamin E, indicating that artemisinin may act via reactive oxygen species generation. Furthermore, capillary formation was restored upon coadministration of exogenous VEGF. The data of the present study suggest that the antiangiogenic activity of artemisinin and the increase in tissue permeability for cytostatics may be exploited for anticancer treatment.  相似文献   

11.
In the lungs, endothelial nitric oxide synthase (eNOS) is usually expressed in endothelial cells and inducible nitric oxide synthase (iNOS) is mainly expressed in alveolar macrophages and epithelial cells. Both eNOS and iNOS are involved in lung inflammation. While they play several roles in lung inflammation formation and resolution, their expression and activity are also regulated by inflammatory factors. Their expression relationship in virus infection-induced lung injury is not well addressed. In this report, we analyzed expression of both eNOS and iNOS, the production of nitric oxide (NO) and reactive oxygen species (ROS), and expression of their associated regulatory proteins, heat shock protein 90 (HSP90) and caveolin-1 (Cav-1), in a swine lung injury model induced by porcine reproductive and respiratory syndrome virus (PRRSV) infection. The combination of upregulation of iNOS and downregulation of eNOS was observed in both natural and experimental PRRSV-infected lungs, while the combination is much enhanced in natural infected lungs. While NO production is much reduced in both infections, ROS was enhanced only in natural infected lungs. Moreover, HSP90 is increased in both natural and experimental infection and less Cav-1 expressed was observed only in the natural PRRSV-infected lungs. Therefore, the increased ROS generation is likely due to the increased iNOS and its unbalanced regulation by HSP90 and Cav-1, and it also likely causes higher endothelial dysfunction in clinical PRRSV-infected lungs.  相似文献   

12.
目的:探讨过氧化物酶体增殖物受体γ(PPARγ)对高糖介导的血管内皮细胞活性氧(ROS)生成的影响及机制。方法:人脐静脉内皮细胞(HUVECs)以高糖(33 mmol/L D-葡萄糖)培养基培养,并以低糖培养基(5.5 mmol/L D-葡萄糖)作为对照。分别利用超氧阴离子和一氧化氮(NO)的荧光探针观察PPARγ激动剂比格列酮对高糖环境下内皮细胞超氧阴离子和NO水平的影响,以Western blotting法观察解偶联蛋白2(UCP2)的表达。结果:PPARγ激动剂比格列酮可显著抑制高糖介导的ROS生成,并可防止高糖介导的内皮细胞NO水平的下降,而上述作用可被PPARγ的阻断剂GW9662所阻断。PPARγ激动剂可上调内皮细胞UCP2的表达,而通过genipin抑制UCP2可显著减弱PPARγ激动剂的作用。结论:激活PPARγ可显著抑制高糖介导的ROS的生成,而该作用可能与其上调UCP2的表达有关。  相似文献   

13.
Recent studies from our laboratory have demonstrated that ascorbate potentiated enzymatic synthesis of nitric oxide (NO) from polymorphonuclear leukocytes (PMNs). NO is known to modulate various function of PMNs such as chemotaxis, adherence, aggregation, and generation of reactive oxygen species (ROS). The role of ascorbate in the PMN phagocytosis, ROS generation, and apoptosis was thus evaluated in the present study. Ascorbate and its oxidized and cell-permeable analog, dehydroascorbate (DHA), did not affect the phagocytosis but enhanced ROS generation and apoptosis following treatment with Escherichia coli or arachidonic acid. A detailed investigation on the DHA-mediated response indicated that inhibitors of DHA uptake, reduced nicotinamide adenine dinucleotide phosphate oxidase, NO synthase, or ROS scavengers attenuated ROS generation. In DHA-treated cells, enhanced generation of peroxynitrite was also observed; thus, ascorbate-mediated ROS and reactive nitrogen species generation might mediate cytotoxicity toward the ingested microbes and subsequently, augmented PMN apoptosis. Results of the present study have helped in delineating the role of ascorbate in the modulation of NO-mediated ROS generation from PMNs.  相似文献   

14.
The purpose of these experiments was to determine the specific role of reactive oxygen species (ROS) in the blood-retinal barrier (BRB) breakdown that characterizes the early stages of vascular dysfunction in diabetes. Based on our data showing that high glucose increases nitric oxide, superoxide, and nitrotyrosine formation in retinal endothelial cells, we hypothesized that excess formation of ROS causes BRB breakdown in diabetes. Because ROS are known to induce increases in expression of the well-known endothelial mitogen and permeability factor vascular endothelial growth factor (VEGF) we also examined their influence on the expression of VEGF and its downstream target urokinase plasminogen activator receptor (uPAR). After 2 weeks of streptozotocin-induced diabetes, analysis of albumin leakage confirmed a prominent breakdown of the BRB. This permeability defect was correlated with significant increases in the formation of nitric oxide, lipid peroxides, and the peroxynitrite biomarker nitrotyrosine as well as with increases in the expression of VEGF and uPAR. Treatment with a nitric oxide synthase inhibitor (N-omega-nitro-L-arginine methyl ester, 50 mg/kg/day) or peroxynitrite scavenger (uric acid, 160 mg/kg/day) blocked the breakdown in the BRB and prevented the increases in formation of lipid peroxides and tyrosine nitration as well as the increases in expression of VEGF and uPAR. Taken together, these data indicate that early diabetes causes breakdown of the BRB by a mechanism involving the action of reactive nitrogen species in promoting expression of VEGF and uPAR.  相似文献   

15.
Advanced glycation end products (AGEs), the senescent macroprotein derivatives that form in increased amounts in diabetes, have been implicated in the pathogenesis of diabetic vascular complications. Indeed, AGEs elicit oxidative stress generation in vascular wall cells through an interaction with their receptor (RAGE), thus playing an important role in vascular inflammation and altered gene expression of growth factors and cytokines. We have previously shown that minodronate, a nitrogen-containing bisphosphonate, blocked the angiogenic signaling of vascular endothelial growth factor in ECs through its antioxidative properties. However, the effects of minodronate on AGE-exposed ECs remain to be elucidated. In this study, we investigated whether and how minodronate could inhibit AGE-induced reactive oxygen species (ROS) generation and subsequent vascular cell adhesion molecule-1 (VCAM-1) gene expression in human umbilical vein endothelial cells (HUVEC). Minodronate or an NADPH oxidase inhibitor, diphenylene iodonium, completely inhibited the AGE-induced ROS generation in HUVEC. Geranylgeranyl pyrophosphate reversed the antioxidative properties of minodronate in AGE-exposed ECs. Furthermore, minodronate was found to prevent AGE-induced nuclear factor--KB activation and subsequently suppress VCAM-1 gene expression in HUVEC. These results demonstrate that minodronate could inhibit VCAM- 1 expression in AGE-exposed ECs by suppressing NADPH oxidase-derived ROS generation, probably via inhibition of geranylgeranylation of Rac, a component of endothelial NADPH oxidase. Our present study suggests that minodronate may have a therapeutic potential in the treatment of patients with diabetic vascular complications.  相似文献   

16.
Sepsis is a generalized inflammatory disease, caused by the hyperinflammatory response of the host, rather than by invading organisms. Endothelial cells play a crucial role in the pathogenesis of sepsis. In this study, we investigated the effects of interleukin‐8 (IL‐8), a known neutrophil chemoattractant, on lipopolysaccharide (LPS) ‐induced reactive oxygen species (ROS) production by endothelial cells, and its significance in the pathogenesis of LPS‐mediated sepsis. The results revealed that IL‐8 directly induced ROS production in human umbilical vein endothelial cells (HUVECs), and also mediated LPS‐induced ROS production by HUVECs. Stimulation of HUVECs by LPS strongly enhanced tissue factor expression, a hallmark of severe sepsis, which was suppressed by IL‐8 knockdown. We further discovered that NADPH oxidase (Nox) 1 expression in LPS‐stimulated HUVECs was markedly repressed by IL‐8 knockdown, and Nox1 knockdown reduced tissue factor expression, suggesting that the LPS/IL‐8 signalling in endothelial cells was predominantly mediated by Nox1. In conclusion, LPS stimulation of endothelial cells causes activation of the IL‐8–Nox1 axis, enhances the production of ROS, and ultimately contributes to the progression of severe sepsis.  相似文献   

17.
18.
目的:从大气细颗粒物PM2.5对血管内皮细胞氧化应激和凋亡的影响,研究PM2.5对血管内皮细胞的毒性。方法:体外培养血管内皮细胞株EA.hy926,用不同浓度的PM2.5染毒24 h后,用CCK-8法测细胞的活性,用DCFH-DA荧光标记法检测细胞内氧自由基生成情况,用流式细胞术检测细胞凋亡率,然后用Western blot法检测凋亡相关蛋白细胞色素C、cleaved caspase-9和cleaved caspase-3的表达变化。结果:CCK-8法结果显示PM2.5对血管内皮细胞有明显的毒性,在浓度大于25 mg/L时可使EA.hy926细胞活性显著下降;PM2.5染毒24 h后可见DCFH-DA荧光染色增强,说明细胞内有大量的氧自由基形成;流式细胞术和Western blot检测证实PM2.5可以通过上调细胞色素C表达和活化cleaved caspase-9和cleaved caspase-3而诱导EA.hy926细胞凋亡。此外,用N-乙酰半胱氨酸抑制氧自由基生成可以抑制血管内皮细胞凋亡,提示PM2.5引起的细胞凋亡与氧化应激有关。结论:PM2.5可导致血管内皮细胞氧化应激水平增强和凋亡增加,这可能是其影响心血管系统功能的机制之一。  相似文献   

19.
Gu YT  Xue YX  Wei XY  Zhang H  Li Y 《Neuroscience letters》2011,493(3):140-144
This study was performed to investigate the mechanism of the blood-brain tumor-barrier (BTB) permeability increase, which was induced by NS1619, a selective K(Ca) channel activator. Using a rat brain glioma (C6) model, we exam the expression of ZO-1 and occludin in mRNA and protein level at different time point after intracarotid infusion of NS1619 (30 μg/kg/min) to tumor sites via RT-PCR and Western blot analysis. The mRNA and protein expression of ZO-1 and occludin had no great change before infusion and began to decrease significantly after 2 h NS1619 infusion, which was significantly attenuated by reactive oxygen species (ROS) scavenger (N-2-mercaptopropionyl glycine, MPG). In addition, MPG also significantly inhibited the increase of BTB permeability and malonaldehyde (MDA) level induced by NS1619. This led to the conclusion that NS1619 could time-dependently increase the BTB permeability by down-regulating the expression of tight junction protein, and this effect could be reversed by ROS.  相似文献   

20.
Park SJ  Lee KS  Kim SR  Chae HJ  Yoo WH  Kim DI  Jeon MS  Lee YC 《Inflammation research》2012,61(10):1069-1083

Background

Occupational asthma is characterized by airway inflammation and hyperresponsiveness associated with increased vascular permeability. AMP-activated protein kinase (AMPK) has been suggested to be a novel signaling molecule modulating inflammatory responses.

Objective

We sought to evaluate the involvement of AMPK in pathogenesis of occupational asthma and more specifically investigate the effect and molecular mechanisms of AMPK activation in regulating vascular permeability.

Methods

The mechanisms of action and therapeutic potential of an AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) were tested in a murine model of toluene diisocyanate (TDI)-induced asthma.

Results

AICAR attenuated airway inflammation and hyperresponsiveness increased by TDI inhalation. Moreover, TDI-induced increases in levels of hypoxia-inducible factor (HIF)-1α, HIF-2α, vascular endothelial growth factor A (VEGFA), and plasma exudation were substantially decreased by treatment with AICAR. Our results also showed that VEGFA expression was remarkably reduced by inhibition of HIF-1α and HIF-2α with 2-methoxyestradiol (2ME2) and that an inhibitor of VEGFA activity, CBO-P11 as well as 2ME2 significantly suppressed vascular permeability, airway infiltration of inflammatory cells, and airway hyperresponsiveness induced by TDI. In addition, AICAR reduced reactive oxygen species (ROS) generation and levels of malondialdehyde and T-helper type 2 cytokines (IL-4, IL-5, and IL-13), while this agent enhanced expression of an anti-inflammatory cytokine, IL-10.

Conclusions

These results suggest that AMPK activation ameliorates airway inflammatory responses by reducing vascular permeability via HIF/VEGFA pathway as well as by inhibiting ROS production and thus may be a possible therapeutic strategy for TDI-induced asthma and other airway inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号