首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta histochemica》2014,116(8):1443-1453
Long term exposure to dexamethasone (Dx) is associated with brain damage especially in the hippocampus via the oxidative stress pathway. Previously, an ethanolic extract from Curcuma longa Linn. (CL) containing the curcumin constituent has been reported to produce antioxidant effects. However, its neuroprotective property on brain histology has remained unexplored. This study has examined the effects of a CL extract on the densities of cresyl violet positive neurons and glial fibrillary acidic protein immunoreactive (GFAP-ir) astrocytes in the hippocampus of Dx treated male rats. It showed that 21days of Dx treatment (0.5 mg/kg, i.p. once daily) significantly reduced the densities of cresyl violet positive neurons in the sub-areas CA1, CA3 and the dentate gyrus, but not in the CA2 area. However, CL pretreatment (100 mg/kg, p.o.) was found to significantly restore neuronal densities in the CA1 and dentate gyrus. In addition, Dx treatment also significantly decreased the densities of the GFAP-ir astrocytes in the sub-areas CA1, CA3 and the dentate gyrus. However, CL pretreatment (100 mg/kg, p.o.) failed to protect the loss of astrocytes in these sub-areas. These findings confirm the neuroprotective effects of the CL extract and indicate that the cause of astrocyte loss might be partially reduced by a non-oxidative mechanism. Moreover, the detection of neuronal and glial densities was suitable method to study brain damage and the effects of treatment.  相似文献   

2.
Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)’s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system.  相似文献   

3.
《Acta histochemica》2014,116(8):1374-1381
In order to evaluate the function of the repaired or regenerated eccrine sweat glands, we must first localize the proteins involved in sweat secretion and absorption in normal human eccrine sweat glands. In our studies, the cellular localization of Na+–K+-ATPase α/β, Na+–K+–2Cl-cotransporter 1 (NKCC1) and aquaporin-5 (AQP5) in eccrine sweat glands were detected by immunoperoxidase labeling. The results showed that Na+–K+-ATPase α was immunolocalized in the cell membrane of the basal layer and suprabasal layer cells of the epidermis, the basolateral membrane of the secretory coils, and the cell membrane of the outer cells and the basolateral membrane of the luminal cells of the ducts. The localization of Na+–K+-ATPase β in the secretory coils was the same as Na+–K+-ATPase α, but Na+–K+-ATPase β labeling was absent in the straight ducts and epidermis. NKCC1 labeling was seen only in the basolateral membrane of the secretory coils. AQP5 was strongly localized in the apical membrane and weakly localized in the cytoplasm of secretory epithelial cells. The different distribution of these proteins in eccrine sweat glands was related to their functions in sweat secretion and absorption.  相似文献   

4.
Formalin fixed and paraffin embedded tissue (FFPE) collections in pathology departments are the largest resource for retrospective biomedical research studies. Based on the literature analysis of FFPE related research, as well as our own technical validation, we present the Translational Research Arrays (TRARESA), a tissue microarray centred, hospital based, translational research conceptual framework for both validation and/or discovery of novel biomarkers. TRARESA incorporates the analysis of protein, DNA and RNA in the same samples, correlating with clinical and pathological parameters from each case, and allowing (a) the confirmation of new biomarkers, disease hypotheses and drug targets, and (b) the postulation of novel hypotheses on disease mechanisms and drug targets based on known biomarkers. While presenting TRARESA, we illustrate the use of such a comprehensive approach. The conceptualisation of the role of FFPE-based studies in translational research allows the utilisation of this commodity, and adds to the hypothesis-generating armamentarium of existing high-throughput technologies.  相似文献   

5.
Kershaw G  Favaloro EJ 《Pathology》2012,44(4):293-302
Coagulation factor inhibitors comprise antibodies that bind to and then neutralise specific pro-coagulant plasma proteins. Coagulation factor inhibitors can develop against any coagulation factor, although the most common are against factor VIII (FVIII). These can develop in individuals with inherited haemophilia A (HA) as an immune response to factor replacement therapy, or as auto-antibodies leading to the condition of acquired HA. Clinical suspicion for inhibitors may arise when individuals present with bleeding symptoms without any prior bleeding diathesis, or when a patient with known mild haemophilia presents with a bleeding diathesis more extreme to their usual presentation, or when there is failure of factor replacement therapy to arrest bleeding in a known haemophiliac. The laboratory identification of factor inhibitors requires a careful and systematic approach that excludes other possible causes of prolonged screening tests, most commonly the activated partial thromboplastin time (APTT), and sometimes prothrombin time (PT). Coagulation factor inhibitor studies, including the Bethesda assay, are then undertaken to measure inhibitor titre, which guides treatment. This paper overviews the laboratory investigation of factor inhibitors, and also briefly reviews recent cross-laboratory inhibitor studies and the most recent evidence related to differential inhibitor formation according to type of therapy.  相似文献   

6.
The oculomotor accessory nucleus, often referred to as the Edinger–Westphal nucleus [EW], was first identified in the 17th century. Although its most well known function is the control of pupil diameter, some controversy has arisen regarding the exact location of these preganglionic neurons. Currently, the EW is thought to consist of two different parts. The first part [termed the preganglionic EW—EWpg], which controls lens accommodation, choroidal blood flow and pupillary constriction, primarily consists of cholinergic cells that project to the ciliary ganglion. The second part [termed the centrally projecting EW—EWcp], which is involved in non-ocular functions such as feeding behavior, stress responses, addiction and pain, consists of peptidergic neurons that project to the brainstem, the spinal cord and prosencephalic regions. However, in the literature, we found few reports related to either ascending or descending projections from the EWcp that are compatible with its currently described functions. Therefore, the objective of the present study was to systematically investigate the ascending and descending projections of the EW in the rat brain. We injected the anterograde tracer biotinylated dextran amine into the EW or the retrograde tracer cholera toxin subunit B into multiple EW targets as controls. Additionally, we investigated the potential EW-mediated innervation of neuronal populations with known neurochemical signatures, such as melanin-concentrating hormone in the lateral hypothalamic area [LHA] and corticotropin-releasing factor in the central nucleus of the amygdala [CeM]. We observed anterogradely labeled fibers in the LHA, the reuniens thalamic nucleus, the oval part of the bed nucleus of the stria terminalis, the medial part of the central nucleus of the amygdala, and the zona incerta. We confirmed our EW–LHA and EW–CeM connections using retrograde tracers. We also observed moderate EW-mediated innervation of the paraventricular nucleus of the hypothalamus and the posterior hypothalamus. Our findings provide anatomical bases for previously unrecognized roles of the EW in the modulation of several physiologic systems.  相似文献   

7.
In animal models of acute ischemic stroke, intravenous dehydroascorbic acid (DHAA), unlike ascorbic acid (AA), readily enters brain and is converted in both normal and ischemic brain into protective ascorbic acid. When given parenterally DHAA minimizes infarct volume and facilitates functional recovery. I hypothesize the same effect will occur in humans with acute ischemic stroke. Efficacy in reducing infarct volume is demonstrable in mice and rats even when DHAA is infused three hours after the experimental infarct. Moreover, there is fivefold mechanistic rational for DHA beside excellent pharmacokinetics and rapid penetration of brain and conversion to protective AA: (1) in ischemic brain, there is a precipitous decline in AA which can be reversed by intravenous DHAA; (2) after reduction of DHAA to AA in both normal and ischemic brain, AA can reduce oxidized vitamin E and glutathione, other protectors of brain against damaging reactive oxygen species which build up in ischemic brain; (3) AA itself can protect brain against damaging reactive oxygen species; (4) AA is an essential cofactor for several enzymes in brain including ten-eleven translocase-2 which upregulates production of protective molecules like brain-derived neurotrophic factor; and (5) DHAA after conversion to AA prevents both lipid oxidation and presumably oxidation of other labile substances (e.g., dopamine) in ischemic brain. In terms of safety, based on all available animal information, DHAA is safe in the proposed dosing regimen. For human clinical trials, the methodology for conducting the proposed animal safety, clinical pharmacology and phase II efficacy studies is straightforward. Finally, if DHAA preserved brain substance and function in humans, it could be employed in pre-hospital stroke patients.  相似文献   

8.
《Molecular immunology》2015,66(2):416-428
The “A Disintegrin And Metalloproteinases” (ADAMs) form a subgroup of the metzincin endopeptidases. Proteolytically active members of this protein family act as sheddases and govern key processes in development and inflammation by regulating cell surface expression and release of cytokines, growth factors, adhesion molecules and their receptors. In T lymphocytes, ADAM10 sheds the death factor Fas Ligand (FasL) and thereby regulates T cell activation, death and effector function. Although FasL shedding by ADAM10 was confirmed in several studies, its regulation is still poorly defined. We recently reported that ADAM10 is highly abundant on T cells whereas its close relative ADAM17 is expressed at low levels and transiently appears at the cell surface upon stimulation. Since FasL is also stored intracellularly and brought to the plasma membrane upon stimulation, we addressed where the death factor gets exposed to ADAM proteases. We report for the first time that both ADAM10 and ADAM17 are associated with FasL-containing secretory lysosomes. Moreover, we demonstrate that TCR/CD3/CD28-stimulation induces a partial positioning of both proteases and FasL to lipid rafts and only the activation-induced raft-positioning results in FasL processing. TCR/CD3/CD28-induced FasL proteolysis is markedly affected by reducing both ADAM10 and ADAM17 protein levels, indicating that in human T cells also ADAM17 is implicated in FasL processing. Since FasL shedding is affected by cholesterol depletion and by inhibition of Src kinases or palmitoylation, we conclude that it requires mobilization and co-positioning of ADAM proteases in lipid raft-like platforms associated with an activation of raft-associated Src-family kinases.  相似文献   

9.
Tissue regeneration and repair require a highly complex and orchestrated series of events that require inflammation, but can be compromised when inflammation is excessive or becomes chronic. Macrophages are one of the first cells to contact and respond to implanted materials, and mediate the inflammatory response. The series of events following macrophage association with biomaterials has been well-studied. Dendritic cells (DCs) also directly interact with biomaterials, are critical for specific immune responses, and can be activated in response to interactions with biomaterials. Yet, much less is known about the responses by DCs. This review discusses what we know about DC response to biomaterials, the underlying mechanisms involved, and how DCs can be influenced by the macrophage response to biomaterials. Lastly, I will discuss how biomaterials can be manipulated to enhance or suppress DC function to promote a specific desirable immune response – a major goal for implantable biologically active therapeutics.  相似文献   

10.
11.
《Molecular immunology》2014,62(2):89-99
The complement system surveillance in the host is effective in controlling viral propagation. Consequently, to subvert this effector mechanism, viruses have developed a series of adaptations. One among these is encoding mimics of host regulators of complement activation (RCA) which help viruses to avoid being labeled as ‘foreign’ and protect them from complement-mediated neutralization and complement-enhanced antiviral adaptive immunity. In this review, we provide an overview on the structure, function and evolution of viral RCA proteins.  相似文献   

12.
13.
This study investigated the nuclear organization of four immunohistochemically identifiable neural systems (cholinergic, catecholaminergic, serotonergic and orexinergic) within the brains of three male Tasmanian devils (Sarcophilus harrisii), which had a mean brain mass of 11.6 g. We found that the nuclei generally observed for these systems in other mammalian brains were present in the brain of the Tasmanian devil. Despite this, specific differences in the nuclear organization of the cholinergic, catecholaminergic and serotonergic systems appear to carry a phylogenetic signal. In the cholinergic system, only the dorsal hypothalamic cholinergic nucleus could be observed, while an extra dorsal subdivision of the laterodorsal tegmental nucleus and cholinergic neurons within the gelatinous layer of the caudal spinal trigeminal nucleus were observed. Within the catecholaminergic system the A4 nucleus of the locus coeruleus complex was absent, as was the caudal ventrolateral serotonergic group of the serotonergic system. The organization of the orexinergic system was similar to that seen in many mammals previously studied. Overall, while showing strong similarities to the organization of these systems in other mammals, the specific differences observed in the Tasmanian devil reveal either order specific, or class specific, features of these systems. Further studies will reveal the extent of change in the nuclear organization of these systems in marsupials and how these potential changes may affect functionality.  相似文献   

14.
Multidrug resistance (MDR) is a phenomenon expressed by many tumors affecting the chemotherapy efficacy, treatment decision, and the disease prognosis. Considering its great implication, non-invasive approaches are needed to identify this phenomenon in early stages of the disease. This article discusses the potential of the emerging non-invasive bacterium-mediated imaging of cancer in diagnosis of MDR. This potential is derived from the effect of cancer MDR on the pharmacokinetics of certain antibiotics, which are substrates of the MDR proteins. Since MDR proteins actively pump their substrates outside the resistant cancer cells, the elimination of the employed reporter bacteria, proliferating within MDR cancer cells, would require a larger dose of these antibiotics compared to those inside non-MDR cancer cells. These bacteria bear reporter genes that produce specific signals such as bioluminescent, fluorescent, magnetic, or radioactive signals that can be detected by non-invasive imaging modalities. Therefore, the presence, degree, and mechanism of MDR can be estimated by comparing the concentration of the employed antibiotic, required to cease these signals (reflecting the elimination of the bacteria), to a pre-determined reference. The real time imaging of MDR cancer and the early diagnosis of MDR, offered by this approach, would provide a better tool for preclinical studies of MDR, and allow a prompt choice of the most appropriate therapy.  相似文献   

15.
Heavy metals can accumulate in organisms via various pathways, including respiration, adsorption and ingestion. They are known to generate free radicals and induce oxidative and/or nitrosative stress with depletion of anti-oxidants. Tuna by-product meal (TBM) is rich in proteins and can, therefore, offer an attractive protein source for animals. This study was undertaken to assess the effects of metals present in TBM, namely cadmium (Cd), lead (Pb), and mercury (Hg), separately or in combination with oxidative stress, on cell viability. Three cell models: rat liver FTO2B, human hepatoma HepG2, and human hepatic WRL-68, were used. Cell viability was determined following exposure to various concentrations of the metals. Two antioxidant genes, catalase (CAT) and superoxide dismutase (SOD), were measured to obtain a better understanding of oxidative stress-associated gene expression. Among the metals present in TBM, only Cd at a concentration of 30 μM was noted to exhibit cytotoxic effects. This cytotoxicity was even more pronounced after co-stimulation with H2O2, used to mimic systemic oxidative stress. At non-toxic concentrations, Hg and Pb were noted to aggravate oxidative stress toxicity. The results further revealed that exposure to Cd, Pb, and a co-stimulation of H2O2 with Hg resulted in the increased expression of antioxidant gene SOD. A risk assessment of toxic contaminants in TBM indicated that food safety objectives should consider the human health impacts of foods derived from animals fed on contaminated meal and that much care should be taken when TBM is used in animal diet.  相似文献   

16.
17.
《Seminars in immunology》2015,27(5):315-321
Adipose tissue is composed of many functionally and developmentally distinct cell types, the metabolic core of which is the adipocyte. The classification of “adipocyte” encompasses three primary types – white, brown, and beige – with distinct origins, anatomic distributions, and homeostatic functions. The ability of adipocytes to store and release lipids, respond to insulin, and perform their endocrine functions (via secretion of adipokines) is heavily influenced by the immune system. Various cell populations of the innate and adaptive arms of the immune system can resist or exacerbate the development of the chronic, low-grade inflammation associated with obesity and metabolic dysfunction. Here, we discuss these interactions, with a focus on their consequences for adipocyte and adipose tissue function in the setting of chronic overnutrition. In addition, we will review the effects of diet composition on adipose tissue inflammation and recent evidence suggesting that diet-driven disruption of the gut microbiota can trigger pathologic inflammation of adipose tissue.  相似文献   

18.
《Molecular immunology》2015,67(2):340-345
Serum amyloid A (SAA) has been reported high expression in autoimmune diseases, such as rheumatoid arthritis (RA). However, detailed molecular mechanisms induced by SAA in the pathogenesis of RA are still unclear. Herein, we focused on the role of SAA–SR-B1 mediated p38 MAPK signaling pathway in the process of RA angiogenesis. Our results showed that both SAA and SR-B1 predominantly localized to vascular endothelial cells, lining and sublining layers in RA synovium. In a series of in vitro experiments with human umbilical vein endothelial cells (HUVECs), SAA induced the endothelial cells (ECs) proliferation, migration and tube formation. However, blockage of SR-B1 and p38 MAPK inhibited SAA-induced cells proliferation, migration and tube formation. In conclusion, our data showed a possible molecular mechanism for SAA–SR-B1 induced angiogenesis events via p38 MAPK signaling pathway.  相似文献   

19.
Plasmodium, the causative agent of malaria, initially multiplies inside liver cells and then in successive cycles inside erythrocytes, causing the symptoms of the disease. In this review, we discuss interactions between the extracellular and intracellular forms of the Plasmodium parasite and innate immune cells in the mammalian host, with a special emphasis on mononuclear phagocytes. We overview here what is known about the innate immune cells that interact with parasites, mechanisms used by the parasite to evade them, and the protective or detrimental contribution of these interactions on parasite progression through its life cycle and pathology in the host.  相似文献   

20.
《Annals of anatomy》2014,196(6):430-440
A significant challenge when investigating autonomic neuroanatomy is being able to reliably obtain tissue that contains neuronal structures of interest. Currently, histochemical staining for acetylcholinesterase (AChE) remains the most feasible and reliable method to visualize intrinsic nerves and ganglia in whole organs. In order to precisely visualize and sample intrinsic cardiac nerves and ganglia for subsequent immunofluorescent labeling, we developed a modified histochemical AChE method using material from pig and sheep hearts. The method involves: (1) chemical prefixation of the whole heart, (2) short-term and weak histochemical staining for AChE in situ, (3) visual examination and extirpation of the stained neural structures from the whole heart, (4) freezing, embedding and cryostat sectioning of the tissue of interest, and (5) immunofluorescent labeling and microscopic analysis of neural structures. Firstly, our data demonstrate that this modified AChE protocol labeled intrinsic cardiac nerves as convincingly as our previously published data. Secondly, there was the added advantage that adrenergic, cholinergic and peptidergic neuropeptides, namely protein gene product 9.5 (PGP 9.5), neurofilament (NF), tyrosine hydroxylase (TH), vesicular monoamine transporter (VMAT2), neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), calcitonin gene related peptide (CGRP), and substance P may be identified. Our method allows the precise sampling of neural structures including autonomic ganglia, intrinsic nerves and bundles of nerve fibers and even single neurons from the whole heart. This method saves time, effort and a substantial amount of antisera. Nonetheless, the proof of specific staining for many other autonomic neuronal markers has to be provided in subsequent studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号