首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.  相似文献   

2.
The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.  相似文献   

3.
Both photoacoustic imaging and power Doppler ultrasound are capable of producing images of the vasculature of living subjects, however, the contrast mechanisms of the two modalities are very different. We present a quantitative and objective comparison of the two methods using phantom data, highlighting relative merits and shortcomings. An imaging system for combined photoacoustic and high-frequency power Doppler ultrasound microscopy is presented. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and power Doppler ultrasound images can be coregistered. Experiments are performed on flow phantoms with various combinations of vessel size, flow velocity, and optical wavelength. For the task of blood volume detection, power Doppler is seen to be advantageous for large vessels and high flow speeds. For small vessels with low flow speeds, photoacoustic imaging is seen to be more effective than power Doppler at the detection of blood as quantified by receiver operating characteristic analysis. A combination of the two modes could provide improved estimates of fractional blood volume in comparison with either mode used alone.  相似文献   

4.
Contrast-enhanced photoacoustic (PA) imaging has been proposed to identify circulating metastatic cancer cells magnetically trapped in the vasculature. However, its sensitivity is limited by the presence of a strong blood-background signal. This technique can be further improved by the significant suppression of blood background. In the phantom study presented here, significant background suppression is demonstrated with magnetomotive photoacoustic imaging. Magnetic particles with a mean diameter of 10 μm were integrated (concentration of 0.05 mg/ml) into an ink-water solution with an optical absorption coefficient of 5 cm(-1) to mimic cells targeted with magnetic nanoparticles and magnetically trapped in the human vasculature. Two mechanically moveable permanent magnets were used to accumulate microparticles in the investigated solution and manipulate them within a thin, 1.6-mm-diameter Teflon tube mimicking a blood vessel. Our results clearly indicate that the undesirable background can be effectively suppressed using the difference of PA images corresponding to different locations of accumulated particles.  相似文献   

5.
The reconstruction of images in photoacoustic tomography is reliant on specifying the speed of sound within the propagation medium. However, for in vivo imaging, this value is not normally accurately known. Here, an autofocus approach for automatically selecting the sound speed is proposed. This is based on maximizing the sharpness of the reconstructed image as quantified by a focus function. Several focus functions are investigated, and their performance is discussed. The method is demonstrated using phantom measurements made in a medium with a known sound speed and in vivo measurements of the vasculature in the flank of an adult mouse.  相似文献   

6.
目的:探讨光声技术的原理、优势及癌症临床应用前景。方法:根据肿瘤发展过程,相继介绍光声技术在肿瘤检测过程中的应用。结果:光声技术对光散射生物组织-肿瘤,能够进行无损深层探测及成像,具有其他成像技术所无法比拟的优势。结论:光声技术是一种新的发展中的成像模式,应用于生物医药并获得解剖和功能信息。它对于了解肿瘤生长、转移,癌症诊断和评测治疗功效都有着潜在的重大用途。  相似文献   

7.
Dual-wavelength reflection-mode photoacoustic microscopy is used to noninvasively obtain three-dimensional (3-D) images of subcutaneous melanomas and their surrounding vasculature in nude mice in vivo. The absorption coefficients of blood and melanin-pigmented melanomas vary greatly relative to each other at these two optical wavelengths (764 and 584 nm). Using high-resolution and high-contrast photoacoustic imaging in vivo with a near-infrared (764-nm) light source, the 3-D melanin distribution inside the skin is imaged, and the maximum thickness of the melanoma (approximately 0.5 mm) is measured. The vascular system surrounding the melanoma is also imaged with visible light (584 nm) and the tumor-feeding vessels found. This technique can potentially be used for melanoma diagnosis, prognosis, and treatment planning.  相似文献   

8.
Simultaneous transcranial imaging of two functional parameters, the total concentration of hemoglobin and the hemoglobin oxygen saturation, in the rat brain in vivo is realized noninvasively using laser-based photoacoustic tomography (PAT). As in optical diffusion spectroscopy, PAT can assess the optical absorption of endogenous chromophores, e.g., oxygenated and deoxygenated hemoglobins, at multiple optical wavelengths. However, PAT can provide high spatial resolution because its resolution is diffraction-limited by photoacoustic signals rather than by optical diffusion. Laser pulses at two wavelengths are used sequentially to acquire photoacoustic images of the vasculature in the cerebral cortex of a rat brain through the intact skin and skull. The distributions of blood volume and blood oxygenation in the cerebral cortical venous vessels, altered by systemic physiological modulations including hyperoxia, normoxia, and hypoxia, are visualized successfully with satisfactory spatial resolution. This technique, with its prominent sensitivity to endogenous contrast, can potentially contribute to the understanding of the interrelationship between neural, hemodynamic, and metabolic activities in the brain.  相似文献   

9.
Osteosarcoma is one of the most common primary malignant tumors of the bone and the second leading cause of cancer-related deaths in the pediatric age group. Confirmed diagnosis and prompt treatment of osteosarcoma are critical for effective prognosis. In this study, we investigate the application of photoacoustic imaging (PAI) for the detection of osteosarcoma in an animal model. Cross-section images of a normal rat leg and a tumorous rat leg were successfully reconstructed in vivo. Morphological changes and the development of the implanted osteosarcoma were accurately mapped with time-dependent photoacoustic images. Furthermore, we evaluate the use of gold nanorods as contrast agents for imaging osteosarcoma with PAI. This is the first study that uses PAI to detect osteosarcoma in vivo, and the results suggest that PAI has the potential clinical application for detecting osteosarcoma in the early stage.  相似文献   

10.
Obtaining absolute chromophore concentrations from photoacoustic images obtained at multiple wavelengths is a nontrivial aspect of photoacoustic imaging but is essential for accurate functional and molecular imaging. This topic, known as quantitative photoacoustic imaging, is reviewed here. The inverse problems involved are described, their nature (nonlinear and ill-posed) is discussed, proposed solution techniques and their limitations are explained, and the remaining unsolved challenges are introduced.  相似文献   

11.
Photoacoustic tomography (PAT), a nonionizing, noninvasive, laser-based technology was adapted to joint imaging for the first time. Pulsed laser light in the near-infrared region was directed toward a joint with resultant ultrasonic signals recorded and used to reconstruct images that present the optical properties in subsurface joint tissues. The feasibility of this joint imaging system was validated on a Sprague Dawley rat tail model and verified through comparison with histology. With sufficient penetration depth, PAT realized tomographic imaging of a joint as a whole organ noninvasively. Based on the optical contrast, various intra- and extra-articular tissues, including skin, fat, muscle, blood vessels, synovium and bone, were presented successfully in images with satisfactory spatial resolution that was primarily limited by the bandwidth of detected photoacoustic signals rather than optical diffusion as occurs in traditional optical imaging. PAT, with its intrinsic advantages, may provide a unique opportunity to enable the early diagnosis of inflammatory joint disorders, e.g., rheumatoid arthritis, and to monitor therapeutic outcomes with high sensitivity and accuracy.  相似文献   

12.
In several human volunteers, photoacoustic microscopy (PAM) has been utilized for noninvasive cutaneous imaging of the skin microvasculature and a melanocytic nevus. Microvascular networks in both acral and nonacral skin were imaged, and multiple features within the skin have been identified, including the stratum corneum, epidermal-dermal junction, and subpapillary vascular plexus. Several vascular and structural differences between acral and nonacral skin were also observed in the photoacoustic images. In addition, a nevus was photoacoustically imaged, excised, and histologically analyzed. The photoacoustic images allowed for in vivo measurement of tumor thickness, depth, and microvasculature-values confirmed by histologic examination. The presented images demonstrate the potential of PAM to aid in the study and evaluation of cutaneous microcirculation and analysis of pigmented lesions. Through its ability to three-dimensionally image the structure and function of the microvasculature and pigmented lesions, PAM can have a clinical impact in diagnosis and assessment of systemic diseases that affect the microvasculature such as diabetes and cardiovascular disease, cutaneous malignancies such as melanoma, and potentially other skin disorders.  相似文献   

13.
A quantitative flow measurement method that utilizes a sequence of photoacoustic images is described. The method is based on the use of gold nanorods as a contrast agent for photoacoustic imaging. The peak optical absorption wavelength of a gold nanorod depends on its aspect ratio, which can be altered by laser irradiation (we establish a wash-in flow estimation method of this process). The concentration of nanorods with a particular aspect ratio inside a region of interest is affected by both laser-induced shape changes and replenishment of nanorods at a rate determined by the flow velocity. In this study, the concentration is monitored using a custom-designed, high-frame-rate photoacoustic imaging system. This imaging system consists of fiber bundles for wide area laser irradiation, a laser ultrasonic transducer array, and an ultrasound front-end subsystem that allows acoustic data to be acquired simultaneously from 64 transducer elements. Currently, the frame rate of this system is limited by the pulse-repetition frequency of the laser (i.e., 15 Hz). With this system, experimental results from a chicken breast tissue show that flow velocities from 0.125 to 2 mms can be measured with an average error of 31.3%.  相似文献   

14.
The metabolic rate of oxygen consumption, an important indicator of tissue metabolism, can be expressed as the change of net blood oxygen flux into and out of a tissue region per 100 g of tissue. In this work, we propose a photoacoustic and Doppler ultrasound method for imaging local blood oxygen flux of a single vessel. An imaging system for combined photoacoustic and high-frequency ultrasound microscopy is presented. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow speed can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or structural photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate oxygen saturation (sO(2)) and total concentration of haemoglobin (C(Hb)), all of the parameters necessary for oxygen flux estimation can be provided. The accuracy of the flow speed and sO(2) estimation has been investigated. In vitro sheep blood phantom experiments have been performed at different sO(2) levels and mean flow speeds. Blood oxygen flux has been estimated, and the uncertainty of the measurement has been quantified.  相似文献   

15.
将目前在光声断层(PAT)成像中得到广泛应用的滤波反投影(FBP)重建算法应用到血管内光声(IVPA)成像中,提出一种简单快速的二维图像重建方法。首先,对组织产生的光声信号进行滤波、逆卷积和时域一阶求导的预处理;然后,针对IVPA在血管腔内封闭成像的特殊性,采用权重法将预处理后的光声信号数据对导管以外的成像区域沿弧线进行反投影,得到成像平面内每个网格点处的初始光声压。最后,得到反映血管壁组织结构形态的横截面灰阶图像。对仿真血管模型的实验表明,采用所提出的方法重建IVPA图像的结构,相似性指标(SSIM)可达到 0.571 7。合理选择滤波函数、滤波截止频率以及测量位置数,可以提高IVPA重建图像的质量;对光声信号进行时域一阶求导处理,能有效地突出重建图像中的组织结构信息。该方法为后续图像重建算法的优化奠定基础。  相似文献   

16.
We present systematic characterization of a photoacoustic imaging system optimized for rapid, high-resolution tomographic imaging of small animals. The system is based on a 128-element ultrasonic transducer array with a 5-MHz center frequency and 80% bandwidth shaped to a quarter circle of 25 mm radius. A 16-channel data-acquisition module and dedicated channel detection electronics enable capture of a 90-deg field-of-view image in less than 1 s and a complete 360-deg scan using sample rotation within 15 s. Measurements on cylindrical phantom targets demonstrate a resolution of better than 200 microm and high-sensitivity detection of 580-microm blood tubing to depths greater than 3 cm in a turbid medium with reduced scattering coefficient mu(s) (')=7.8 cm(-1). The system is used to systematically investigate the effects of target size, orientation, and geometry on tomographic imaging. As a demonstration of these effects and the system imaging capabilities, we present tomographic photoacoustic images of the brain vasculature of an ex vivo mouse with varying measurement aperture. For the first time, according to our knowledge, resolution of sub-200-microm vessels with an overlying turbid medium of greater than 2 cm depth is demonstrated using only intrinsic biological contrast.  相似文献   

17.
Photoacoustic imaging, based on ultrasound detected after laser irradiation, is an extension to diagnostic ultrasound for imaging the vasculature, blood oxygenation and the uptake of optical contrast media with promise for cancer diagnosis. For versatile scanning, the irradiation optics is preferably combined with the acoustic probe in an epi-style arrangement avoiding acoustically dense tissue in the acoustic propagation path from tissue irradiation to acoustic detection. Unfortunately epiphotoacoustic imaging suffers from strong clutter, arising from optical absorption in tissue outside the image plane, and from acoustic backscattering. This limits the imaging depth for useful photoacoustic image contrast to typically less than one centimeter. Deformation-compensated averaging (DCA), which takes advantage of clutter decorrelation induced by palpating the tissue with the imaging probe, has previously been proposed for clutter reduction. We demonstrate for the first time that DCA results in reduced clutter in real-time freehand clinical epiphotoacoustic imaging. For this purpose, combined photoacoustic and pulse-echo imaging at 10-Hz frame rate was implemented on a commercial scanner, allowing for ultrasound-based motion tracking inherently coregistered with photoacoustic frames. Results from the forearm and the neck confirm that contrast is improved and imaging depth increased by DCA.  相似文献   

18.
We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) detects both the pulse-echo ultrasound and photoacoustic signals. A multichannel data acquisition system acquires the RF channel data. The imaging system enables rendering of co-registered 3-D ultrasound and photoacoustic images without mechanical scanning. The resolution along the azimuth, elevation, and axial direction are measured to be 0.69, 0.90 and 0.84 mm for photoacoustic imaging. In vivo 3-D photoacoustic mapping of the sentinel lymph node was demonstrated in a rat model using methylene blue dye. These results highlight the clinical potential of 3-D PA imaging for identification of sentinel lymph nodes for cancer staging in humans.  相似文献   

19.
The clinical significance of a burn depends on the percentage of total body involved and the depth of the burn. Hence a noninvasive method that is able to evaluate burn depth would be of great help in clinical evaluation. To this end, photoacoustic microscopy is used to determine the depth of acute thermal burns by imaging the total hemoglobin concentration in the blood that accumulates along the boundaries of injuries as a result of thermal damage to the vasculature. We induce acute thermal burns in vivo on pig skin with cautery. Photoacoustic images of the burns are acquired after skin excision. In a burn treated at 175 degrees C for 20 s, the maximum imaged burn depth is 1.73+/-0.07 mm. In burns treated at 150 degrees C for 5, 10, 20, and 30 s, respectively, the trend of increasing maximum burn depth with longer thermal exposure is demonstrated.  相似文献   

20.
The evolution in our understanding of tumor angiogenesis has been the result of pioneering imaging and computational modeling studies spanning the endothelial cell, microvasculature and tissue levels. Many of these primary data on the tumor vasculature are in the form of images from pre-clinical tumor models that provide a wealth of qualitative and quantitative information in many dimensions and across different spatial scales. However, until recently, the visualization of changes in the tumor vasculature across spatial scales remained a challenge due to a lack of techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such data from patients presents a serious hurdle for the development and validation of predictive, multiscale computational models of tumor angiogenesis. In this review, we discuss the development of multiscale models of tumor angiogenesis, new imaging techniques capable of reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of “image-based models” of tumor blood flow and molecular transport. Collectively, these developments are helping us gain a fundamental understanding of the cellular and molecular regulation of tumor angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this exciting integration of multiscale imaging and mathematical modeling to have widespread application beyond the tumor vasculature to other diseases involving a pathological vasculature, such as stroke and spinal cord injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号