首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
目的观察膝关节持续被动活动仪(CPM)体内力学刺激对组织工程软骨修复大动物关节负重区软骨缺损效果的影响。方法研究、设计和制造能够适用于体内力学刺激羊膝关节软骨缺损修复的膝关节连续被动活动仪(CPM);将实验动物(山羊膝关节双髁负重区制造直径6 mm软骨缺损)分为三组:空白组:单纯缺损未植入修复组织;藻酸钙+骨膜+细胞组:藻酸钙复合自体软骨细胞凝胶植入软骨缺损区,自体骨膜覆盖缺损区;藻酸钙+骨膜+细胞+CPM组:藻酸钙复合自体软骨细胞凝胶植入软骨缺损区,自体骨膜覆盖缺损区,术后早期接受CPM锻炼。分别于术后3个月、6个月、12个月(12个月组仅包括CPM力学刺激组)取材,通过修复组织的大体、组织学观察及其评分比较3组软骨修复效果。结果藻酸钙复合软骨细胞能够较好地修复羊负重区关节面软骨缺损,将缺损修复的大体观察、组织学等结果进行单因素统计学分析,发现接受体内CPM力学刺激组效果最好,其修复组织中透明软骨比例最多,其次为藻酸钙+骨膜+细胞组。结论膝关节持续被动活动仪(CPM)体内力学刺激能够促进组织工程软骨修复大动物关节负重区软骨缺损的效果。  相似文献   

2.
背景:纤维蛋白胶和微载体均可作为软骨组织工程的良好载体,但因力学性能差和可塑性差等缺点限制其广泛应用。目的:以负载软骨细胞的Cultispher微载体为基础,复合纤维蛋白胶,构建Cultispher微载体/纤维蛋白胶复合支架,观察其用于修复兔膝关节软骨缺损的效果。方法:将兔软骨细胞与Cultispher微载体置于搅拌式生物反应器中三维悬浮共培养,待细胞帖附至微载体表面并大量扩增后,将负载有软骨细胞的Cultispher微载体与纤维蛋白胶复合,构建Cultispher微载体/纤维蛋白胶复合支架,并用于修复兔膝关节股骨滑车软骨缺损。实验按不同的软骨缺损处植入物分为3组:MCF组以负载软骨细胞的Cultispher微载体/纤维蛋白胶复合支架修复软骨缺损;MF组以单纯Cultispher微载体/纤维蛋白胶复合支架修复软骨缺损;空白对照组旷置软骨缺损,不作任何处理。术后3,6个月取材。检测并记录大体观、大体观评分、病理学染色、病理学评分、Micro-CT扫描等指标,评估软骨修复效果。结果与结论:①大体观显示MCF组的软骨修复效果明显优于MF组和空白对照组;②番红"O"、天狼猩红病理染色结果显示MCF组的修复组织主要以透明软骨为主,而MF组和空白对照组的修复组织主要以纤维组织为主;③Micro-CT扫描结果显示,MCF组较MF组和空白对照组获得更好的软骨下骨重建;④MCF组的大体观评分与病理学评分均明显高于MF组和空白对照组;⑤结果证实,负载软骨细胞的Cultispher微载体/纤维蛋白胶复合支架能成功修复兔股骨滑车软骨缺损。  相似文献   

3.
改良纤维蛋白胶软骨细胞复合物修复软骨缺损的实验研究   总被引:6,自引:0,他引:6  
目的:研究改良纤维蛋白胶细胞复合物和标准纤维蛋白胶细胞复合物修复关节软骨缺损的效果。方法:(1)分离3周龄幼兔关节软骨细胞并体外单层培养,将抑肽酶和氨甲环酸加入纤维蛋白胶(FG)中,构建标准FG细胞复合物和改良FG细胞复合物。(2)体外培养后植入动物模型体内,A,B组缺损内分别植入标准FG细胞复合物和改良FG细胞复合物,C组为空白对照。术后分期取材,对新生软骨进行组织学观察及氨基多糖含量测定。结果:改良FG细胞组新生软骨在组织学特性上与正常软骨相似,修复效果优于标准组。结论:在纤维蛋白胶中加入抑肽酶和氨甲环酸,可使FG降解速度与软骨细胞基质形成速度同步,提高了软骨修复质量。  相似文献   

4.
背景:应用组织工程学方法修复软骨组织缺损,需要有合适的载体,在发挥承载作用的同时对软骨细胞起到良好的固定作用。目的:观察利用脱钙骨基质与生物蛋白胶的复合载体修复实验性兔关节软骨缺损的可行性及有效性。方法:制备脱钙骨基质与生物蛋白胶的复合载体。建立兔关节软骨缺损模型,编号后,将42只新西兰大白兔随机分为3组:载体复合细胞组(n=15):兔膝关节软骨缺损区植入含有软骨细胞的脱钙骨基质与生物蛋白胶的复合载体;单纯载体组(n=15):植入不含细胞的复合载体;空白对照组(n=12):不进行任何植入处理。依照分组,分别于术后4,8,12周取材,进行大体、组织学、甲苯胺蓝染色观察,并做Wakitani评分,观察各组动物关节缺损修复效果。结果与结论:载体复合细胞组12周时可以修复膝关节软骨的缺损,并且以透明软骨组织为主,修复效果明显强于单纯载体组与空白对照组;Wakitani评分在各个时间均优于其他两组(P0.05)。提示脱钙骨基质与生物蛋白胶的复合载体负载软骨细胞可以作为软骨组织工程支架材料,能够用于再生修复软骨的缺损。  相似文献   

5.
目的以胶原为原料开发一种小型胶原支架材料,尝试是否适合旋转反应器来复合软骨细胞,并探讨复合细胞后修复软骨损伤的效果。方法成年猪跟腱中提取胶原,制备胶原支架,进行细胞毒性检测和生物相容性分析。将其切成1 mm~3小块,置于旋转培养器中与软骨细胞共培养,倒置相差显微镜观察细胞贴附效果。建立兔关节软骨缺损模型,编号后,将14只新西兰大白兔随机分为2组:支架材料组(n=8),兔膝关节软骨缺损区植入胶原支架材料和软骨细胞;空白对照组(n=6),不进行任何植入处理。进行HE染色后观察。结果胶原支架呈瓷白色,表面空隙均匀,无细胞毒性,生物相容性良好,但在体内降解较快。在旋转反应器中,支架可以与软骨细胞良好结合。胶原支架植入动物体内12周,虽未完全修复缺损,但已有少量软骨细胞在缺损处出现,修复效果优于对照组。结论制备的胶原支架复合软骨细胞短期内有一定的修复软骨缺损的能力,长期效果欠佳,可能与胶原支架在体内过快降解有关,尚需对制备方法进行改进。  相似文献   

6.
文题释义: 自体软骨细胞移植:对于3.5-10 cm2的软骨缺损或多个缺损来说,自体软骨细胞移植是一种有效的软骨修复措施,取少量患者自体软骨于体外培养软骨细胞,并增殖到一定数量后植入软骨缺损处,从而达到修复缺损的目的。 基质诱导的自体软骨细胞移植:把经培养增殖后的软骨细胞接种到Ⅰ/Ⅲ型双层胶原膜上,继续培养数日,细胞与支架结合紧密之后,使用生物蛋白胶粘贴到关节软骨缺损病灶底部。术后,软骨细胞从胶原膜上游离并穿过生物胶,迁徙到软骨缺损的基底部。胶原膜和生物胶逐步降解并被吸收。接种的软骨细胞在局部生长、繁殖,并分泌基质,形成新的软骨组织修复缺损。背景:由于关节软骨具有复杂的生物学特性和高度的耐用性,自然退变或创伤引起的缺损都可能导致其结构和功能上不可逆的损害,因此关节软骨损伤后的修复治疗是临床上急需解决的问题。 目的:报告关节软骨修复技术失败最常见的危险因素及其发生率,分析影响选择特定手术治疗方法来处理软骨修复失败最重要的因素。 方法:以“articular cartilage, repair, clinic/clinical failure, surgery”为检索词,检索 PubMed和MEDLINE数据库,时限为2007至2019年,语言限制为英文。初检得到文献约343篇,根据纳入排出标准筛选,共纳入38篇文章进行分析。 结果与结论:①微骨折术和软骨镶嵌成形术在关节软骨修复后的前期和中期显示出不可忽视的失败率,而使用自体软骨细胞移植和异体骨软骨移植修复关节软骨的效果更好。②对于软骨修复失败的治疗:在以往软骨修复失败的患者中应用异体骨软骨移植可能是一个安全的选择,但对于失败的异体骨软骨移植的修复则有更高的失败率;而既往自体软骨细胞移植或基质诱导的自体软骨细胞移植失败的患者,经进一步的自体软骨细胞移植或基质诱导的自体软骨细胞移植治疗后,其治疗效果是可以接受的。此外,有软骨下骨髓刺激病史的患者,自体软骨细胞移植的失败率更高。③软骨修复失败的处理取决于手术治疗失败的类型以及软骨缺损的面积、部位的不同,异体骨软骨移植是治疗软骨下骨髓刺激患者软骨修复失败的最可靠的方法,而自体软骨细胞移植或基质诱导的自体软骨细胞移植在既往软骨修复失败的患者中显示出可以接受的治疗效果,在处理软骨修复失败的患者时,应该特别注意软骨下骨质的情况。ORCID: 0000-0002-3907-9145(张宇) 中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程  相似文献   

7.
软骨组织工程研究的新进展   总被引:1,自引:0,他引:1  
软骨组织的再生能力有限 ,组织工程软骨的构建对修复软骨缺损意义重大。本文从四方面介绍了软骨组织工程的研究的新进展 ,包括软骨种子细胞的研究、软骨细胞与支架的体外培养、细胞支架复合物植入体内的研究及软骨细胞移植的临床应用。  相似文献   

8.
软骨组织的再生能力有限,组织工程软骨的构建对修复软骨缺损意义理大。本从四方面介绍了软骨组织工程的研究的新进展,包括软骨种子细胞的研究,软骨细胞与支架的体外培养,细胞支架复合物植入体内的研究及软骨细胞移植的临床应用。  相似文献   

9.
背景:大块软骨损伤目前临床上尚无方法治疗,干细胞技术出现后为解决这一难题提供了理论支持。采用新型的支架材料"壳聚糖-胶原蛋白"结合干细胞诱导分化移植给动物模型是一种较新的尝试。目的:观察壳聚糖-胶原凝胶复合骨髓间充质干细胞修复兔关节软骨缺损的组织学变化。方法:体外培养扩增兔骨髓间充质干细胞。采用软骨诱导分化培养基对P2代细胞进行成软骨诱导。同时制备"壳聚糖-胶原蛋白"支架和兔关节软骨缺损模型。缺损用含有骨髓间充质干细胞的壳聚糖-胶原凝胶填充,另一条关节用没有细胞的支架或不做处理。其中12个关节作为实验组(接受骨髓间充质干细胞+支架),8个关节作为空白对照组(不做处理),8个关节作为单纯支架组(未植入细胞)。造模后于2,4,8,16周进行组织学评分并处死动物行组织学染色。结果与结论:造模后16周移植的细胞一致分化为软骨细胞,大部分软骨缺损区被新生软骨修复,组织学评分实验组关节修复良好。提示应用骨髓间充质干细胞结合"壳聚糖-胶原蛋白"复合物可以修复关节软骨缺损。  相似文献   

10.
背景:创伤等导致的关节软骨缺损是国内外骨科界面临的难题,组织工程学技术为软骨缺损的修复提供了新方法。目的:探讨壳聚糖-骨髓间充质干细胞复合材料修复兔膝关节软骨缺损的可行性。方法:将培养的兔骨髓间充质干细胞种植到壳聚糖支架上体外构建壳聚糖-骨髓间充质干细胞复合材料,移植到兔关节软骨缺损处为实验组,不予以特殊处理为对照组。术后6,12周,大体观察以及甲苯胺蓝染色评定两组软骨组织修复情况。结果与结论:术后6周,对照组仅有纤维组织增生,实验组关节软骨缺损处有软骨样组织生成。术后12周,对照组软骨缺损边缘可观察到少量类透明软骨组织,实验组缺损区完全覆盖有光滑、透明软骨组织。术后12周,对照组甲苯胺蓝染色较淡,有少量软骨组织生成,实验组甲苯胺蓝染色较明显,缺损完全被透明软骨组织所覆盖,软骨细胞较多。结果表明兔骨髓间充质干细胞-壳聚糖支架复合材料能更好的引导软骨组织的生成,促进软骨缺损修复。  相似文献   

11.
A large full-thickness articular-cartilage defect was created in the medial femoral condyle of 32 adult goats. The defects were xenografted with isolated rabbit chondrocytes suspended in fibrin glue. Sham operated goats, where only a standardized defect was created, were used as controls. Results of cartilage repair were assessed after 3, 8, 13, 26 and 52 weeks. The repair tissue was evaluated macroscopically, histologically and biochemically. Results indicated that xenografted rabbit chondrocytes survived the transplantation and maintained their potential to produce matrix in fibrin glue, particularly if they were located in a non-weight-bearing area. In terms of an immunological reaction to xenografted chondrocytes, only mild signs of synovitis were observed in both groups and rejection of transplanted cells did not occur. From 3 weeks gradually progressive resolvement of the fibrin glue was observed with subsequent replacement by fibrous tissue. Initially xenografted defects histologically showed better tendency for cartilage regeneration, however, 52 weeks after surgery no significant differences could be detected in the repair tissue of both groups macroscopically, histologically and on biochemical scoring. The amount of collagen type II in the newly synthesized matrix was 75% 1 year after surgery. This study shows that isolated heterologous chondrocytes can be used for transplantation in articular cartilage defects, however, fibrin glue does not offer enough biomechanical support to the cells to maintain its function as a three-dimensional scaffold.  相似文献   

12.
Cell-based tissue-engineered allogeneic implant for cartilage repair   总被引:6,自引:0,他引:6  
The potential for using of allogeneic cartilage chips, transplanted in a biologic polymer with articular chondrocytes, as a tool for articular cartilage repair was studied. Small lyophilized articular cartilage chips were mixed with a cell/fibrinogen solution and thrombin to obtain implantable constructs made of fibrin glue, chondrocytes, and cartilage chips. Specimens were implanted in the subcutaneous tissue on the backs of nude mice (experimental group A). Three groups of controls (groups B, C, and D) were also prepared. Group B consisted of fibrin glue and cartilage chips without chondrocytes. Group C consisted of fibrin glue and chondrocytes without cartilage chips, and group D was composed solely of fibrin glue. All samples were carefully weighed before implantation in the mice. The constructs were harvested from the animals at 6, 9, and 12 weeks, examined grossly, and weighed. The samples were then processed and stained with hematoxylin and eosin for histological examination. Gross evaluation and weight analysis of the constructs at the time of retrieval showed retention of the original mass in the samples made of fibrin glue, chondrocytes, and cartilage chips (group A) and demonstrated a cartilaginous consistency upon probing. Specimens from constructs of fibrin glue and cartilage chips without chondrocytes (control group B) retained most of their volume, but were statistically lighter than specimens from group A and were much softer and more pliable than those in group A. Samples of specimens from constructs of fibrin glue and chondrocytes (groups C) and fibrin glue alone (group D) both showed a substantial reduction of their original masses over the experimental time periods when compared to the samples in groups A and B, although specimens from group C demonstrated new cartilage matrix formation. Histological analysis of specimens in experimental group A demonstrated the presence of cartilage chips surrounded by newly formed cartilaginous matrix, while specimens of control group B showed only fibrotic tissue surrounding the devitalized cartilage pieces. Cartilaginous matrix was also observed in control group C, in which cartilage chips were absent, whereas only fibrin glue debris was observed in control group D. This study demonstrated that a composite of fibrin glue and devitalized cartilage can serve as a scaffold for chondrocyte transplantation, preserve the original phenotype of the chondrocytes, and maintain the original mass of the implant. This may represent a valid option for addressing the problem of articular cartilage repair.  相似文献   

13.
贺继平  苏晓云 《解剖学报》2011,42(4):537-541
目的 通过探讨转化生长因子β1(TGF-β1)和骨形态发生蛋白2(BMP-2)联合使用对兔膝关节全层关节软骨的修复作用,为关节软骨损伤的治疗提供参考依据.方法 取8只6月龄健康家兔,随机分成两组,每组4只.在无菌条件下,于兔双侧膝关节股骨内外侧髁关节负重面制备直径3mm、深2mm全层关节软骨缺损,用胶原海绵填充或将胶原...  相似文献   

14.
Yang HS  La WG  Bhang SH  Kim HJ  Im GI  Lee H  Park JH  Kim BS 《Tissue engineering. Part A》2011,17(13-14):1809-1818
Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.  相似文献   

15.
To repair full-thickness articular cartilage defects in rabbit knees, we transplanted periosteal cells in a fibrin gel and determined the influence of transforming growth factor beta (TGF-beta) in vitro. Alginate served as a temporary supportive matrix component and was removed prior to transplantation. The defects were analyzed macroscopically, histologically, and electron microscopically, and evaluated with a semi-quantitative score system. Periosteal cell transplants showed a chondrogenic differentiation, which results in the development of embryonic-like cartilage tissue after 4 weeks and complete resurfacing of the patellar groove after 12 weeks. In the control groups, no repair was observed. Under the influence of TGF-beta1 we observed a reduction of the cartilage layer, whereas the osteochondral integration and the zonal architecture were improved. Periosteal cell-beads are stable cartilage transplants and have stiffness and elasticity enough for easy and sufficient transplant fixation. Further investigations are necessary to optimize the application of TGF-beta1 for cartilage repair.  相似文献   

16.
Articular chondrocytes can synthesize new cartilaginous matrix in vivo that forms functional bonds with native cartilage. Other sources of chondrocytes may have a similar ability to form new cartilage with healing capacity. This study evaluates the ability of various chondrocyte sources to produce new cartilaginous matrix in vivo and to form functional bonds with native cartilage. Disks of articular cartilage and articular, auricular, and costal chondrocytes were harvested from swine. Articular, auricular, or costal chondrocytes suspended in fibrin glue (experimental), or fibrin glue alone (control), were placed between disks of articular cartilage, forming trilayer constructs, and implanted subcutaneously into nude mice for 6 and 12 weeks. Specimens were evaluated for neocartilage production and integration into native cartilage with histological and biomechanical analysis. New matrix was formed in all experimental samples, consisting mostly of neocartilage integrating with the cartilage disks. Control samples developed fibrous tissue without evidence of neocartilage. Ultimate tensile strength values for experimental samples were significantly increased (p < 0.05) from 6 to 12 weeks, and at 12 weeks they were significantly greater (p < 0.05) than those of controls. We conclude that articular, auricular, and costal chondrocytes have a similar ability to produce new cartilaginous matrix in vivo that forms mechanically functional bonds with native cartilage.  相似文献   

17.
Bone-tendon junction injuries have poor healing potential. This study evaluated the role of TGF-β and BMP-2 in a fibrin glue carrier in healing of injuries at bone-tendon junction. Seventy-two skeletally mature male rabbits were divided into 4 groups. The tendo-Achilles was surgically transected at its insertion and reattached with a pullout suture. Group 1 served as a control. In groups 2, 3, and 4, fibrin glue, a mixture of TGF-β and fibrin glue, and a mixture of BMP-2 and fibrin glue were injected into the bone-tendon junction. The animals were sacrificed at 2, 4 and 8 weeks after surgical procedure. The addition of TGF-β to fibrin glue did not significantly improve the biomechanical properties of repair tissue. BMP-2 in combination with fibrin glue accelerates healing in a bone-tendon injury and also improves the histological and biomechanical properties of the repair tissue so formed.  相似文献   

18.
Bone-tendon junction injuries have poor healing potential. This study evaluated the role of TGF-beta and BMP-2 in a fibrin glue carrier in healing of injuries at bone-tendon junction. Seventy-two skeletally mature male rabbits were divided into 4 groups. The tendo-Achilles was surgically transected at its insertion and reattached with a pullout suture. Group 1 served as a control. In groups 2, 3, and 4, fibrin glue, a mixture of TGF-beta and fibrin glue, and a mixture of BMP-2 and fibrin glue were injected into the bone-tendon junction. The animals were sacrificed at 2, 4 and 8 weeks after surgical procedure. The addition of TGF-beta to fibrin glue did not significantly improve the biomechanical properties of repair tissue. BMP-2 in combination with fibrin glue accelerates healing in a bone-tendon injury and also improves the histological and biomechanical properties of the repair tissue so formed.  相似文献   

19.
Autologous fibrin glue has been demonstrated as a potential scaffold with very good biocompatibility for neocartilage formation. However, fibrin glue has been reported not to provide enough mechanical strength, but with many growth factors to interfere the tissue growth. Gelatin/hyaluronic acid/chondroitin-6-sulfate (GHC6S) tri-copolymer sponge has been prepared as scaffold for cartilage tissue engineering and showed very good results, but problems of cell seeding and cell distribution troubled the researchers. In this study, GHC6S particles would be added into the fibrin glue to provide better mechanical strength, better cell distribution, and easier cell seeding, which would be expected to improve cartilage regeneration in vitro. Porcine cryo-precipitated fibrinogen and thrombin prepared from prothrombin activated by 10% CaCl(2) solution were used in two groups. One is the fibrin glue group in which porcine chondrocytes were mixed with thrombin-fibrinogen solution, which was then converted into fibrin glue. The other is GHC6S-fibrin glue in which GHC6S particles were added into the thrombin-fibrinogen solution with porcine chondrocytes. After culturing for 1-2 weeks, the chondrocytes cultured in GHC6S-fibrin glue showed a round shape with distinct lacuna structure and showed positive in S-100 protein immunohistochemical stain. The related gene expressions of tissue inhibitor of metalloproteinases-1, matrix metalloproteinase-2, MT1-MMP, aggrecan, decorin, type I, II, X collagen, interleukin-1 beta, transforming growth factor-beta 1 (TGF-beta1), and Fas-associating death domain were checked by real-time PCR. The results indicated that the chondrocytes cultured in GHC6S-fibrin glue would effectively promote extracellular matrix (ECM) secretion and inhibit ECM degradation. The evidence could support that GHC6S-fibrin glue would be a promising scaffold for articular cartilage tissue engineering.  相似文献   

20.
This study investigated the in vivo formation of engineering cartilage within living or devitalized cartilage discs using reflectance mode confocal microscopy and conventional light microscopy. Pig articular chondrocytes were suspended in fibrin glue and placed between two cartilage discs. Four experimental groups were prepared: in groups 1 and 2, the cell-hydrogel composite was placed between two live or between two devitalized cartilage discs, respectively; in groups 3 and 4, acellular fibrin glue was placed between two live or between two devitalized cartilage discs, respectively. Samples were implanted in the back of nude mice and analyzed after 2, 5, and 8 weeks. Results showed that engineered cartilage seems to grow more homogenously when the cell-seeded gel was placed between devitalized cartilages than when it was placed between live cartilage matrices. Confocal microscopy provides valuable information on the integration of tissue-engineered cartilage with native tissue and could be useful for nondestructive imaging in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号