首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
测试磁驱动轴流心室辅助装置主体血泵溶血性能。利用计算流体力学(CFD)软件ANSYS,基于红细胞受到切应力和相应曝光时间的计算溶血方法预测血泵溶血性能,计算红细胞粒子随着时间推移在血泵内运动轨迹上受到破坏程度。通过体外模拟循环实验实际测试血泵体外溶血性能,计算得到血泵实际标准溶血指数。CFD计算结果转化的标准溶血指数与实际体外实验结果比较相差较大,与CFD计算简化和实际计算循环周期有很大关系。磁驱动轴流心室辅助装置主体血泵有较好的实际溶血性能,血泵实验期间无不良状况发生,可以进行进一步实验。  相似文献   

2.
根据中国终末期心衰患者对左心辅助泵辅助人体血液循环的要求,设计以3 L/min流量、100 mm Hg压升为设计点,流量范围为2~7 L/min的微型可植入轴流血泵。该血泵采用纺锤形的转子叶轮结构以及带分流叶片、悬臂叶片的尾导结构,以使血泵在较宽的压力流量范围内具有良好的溶血和抗血栓特性。本文用数值模拟及粒子成像测速(PIV)的方法分析血泵的水力学特性、流场及溶血特性。结果表明:血泵转速为7 000~11 000 r/min时,在2~7 L/min的流量范围内可提供60.0~151.3 mm Hg的压升;分流叶片抑制了尾导的尾缘吸力面处的流动分离;悬臂式叶片结构将转子叶片的叶尖间隙变为尾导叶片的叶根间隙,间隙的切线速度由6.2 m/s降至4.3~1.1 m/s;血泵的最大标量剪切应力值为897.3 Pa,平均剪切应力值为37.7 Pa;采用Heuser溶血模型得到的溶血指数为0.168%;PIV试验所得泵内尾导区域的流场速度分布与数值计算得到的流场特征吻合良好。本研究所设计的轴流血泵的尾导具有分流叶片和悬臂叶片,流道内血流无较大分离流动,降低了剪切力对血液的破坏,溶血性能良好,压力流量性能满足临床需要。  相似文献   

3.
微型轴流血泵溶血的数值模拟   总被引:2,自引:1,他引:1  
基于N-S方程和标准K-ε湍流模型,采用非结构网格技术,对微型轴流血泵内部三维流场进行了数值模拟,得到了速度场、压力场等流场细节;同时采用Lagrange粒子追踪法获得了沿不同流线的剪应力以及红细胞暴露接触时间的分布,并引入溶血计算的经验公式,计算对比了不同转速条件下血泵的溶血指标,重点分析了血泵在5L/min、8000r/min工况下的溶血性能,对于血泵溶血的估算,本方法是可行的.  相似文献   

4.
血泵的溶血程度主要受血液的运动流场影响,所以研究血液在血泵内腔的螺旋流动特性对于螺旋叶片血泵的设计和研究工作具有十分重要的意义。本文将血液流变理论和传统的力学分析方法相结合,对血液在低、高剪切变率两种条件下的环形空间螺旋流动性能进行了研究,给出了速度表达式,分析了各参数对流动性能的影响,同时还对高速螺旋流场中红细胞的力学行为进行了分析。结果表明,高速螺旋流场中的血液流动情况十分复杂,在进行高速螺旋血泵设计时,应综合考虑血液在不同剪切变率条件下的流动性能及红细胞的力学行为。  相似文献   

5.
轴流式血泵转速过高、离心式血泵容易产生流动死区是造成血液损伤的重要原因,而混流式血泵能有效缓解轴流式血泵的转速过高以及离心式血泵的流动死区问题。基于此,本研究旨在探究闭式叶轮混流式血泵的性能效果。通过数值模拟的方法对闭式叶轮混流式血泵进行数值模拟,分析该类型血泵的流场特性及压力分布情况,探讨其水力性能以及可能对红细胞造成的损伤程度,并与半开式叶轮结构混流式血泵的数值模拟结果进行性能对比。结果表明:本研究中的闭式叶轮混流式血泵具有良好的性能,能够安全高效运行。该泵在5 L/min下能够达到100 mm Hg的扬程,血泵内流动均匀,没有明显的涡流、回流以及流动停滞现象,压力分布均匀合理,可有效地避免血栓;溶血指数平均值(HI)为4.99×10^-4,具有良好的血液相容性;与半开式叶轮混流式血泵相比,闭式叶轮混流式血泵扬程和效率更高、溶血指数平均值更小,且具有更好的水力性能及避免血液损伤的能力。通过本文研究结果,或能为闭式叶轮混流式血泵的性能评价提供依据。  相似文献   

6.
溶血性能是影响血泵可靠性的主要因素之一。对溶血性能的有效评价,为血泵的设计和改进提供有力依据。本文对血泵研究和开发中进行溶血评价的方法进行综述,包括溶血估算和溶血实验。文章首先阐述了溶血估算,包括数值估算模型和基于计算流体力学技术的溶血分析;然后介绍有模型样机之后的溶血实验,包括体外循环模拟实验以及动物实验。其次对比分析两种方法的优势与局限性,并得出相关结论:溶血估算适用于血泵研发前期,溶血实验适用于中后期已有模型样机后的溶血评价;溶血估算为溶血实验奠定了基础,溶血实验验证了溶血估算的结果;溶血实验研究与数值估算相互联系、相互促进,但不能完全替代;针对不同的研究者和研究机构,应根据自身条件选择合适的评价方法。最后讨论血泵溶血评估领域存在的问题以及发展趋势。  相似文献   

7.
溶血的定量评价对于人工心脏泵的设计和研究十分重要.本研究应用CFD(computational fluid dynamics)技术,针对两种叶轮设计的离心血泵进行了数值模拟,计算得到了其内部的流线分布.根据溶血、切应力和暴露时间三者之间的幂函数模型,对血泵的溶血进行了预测.最后,用溶血实验结果进行了验证.结果表明,在相同的边界条件下,流线型叶轮泵内的溶血值要小于直叶片叶轮泵,与溶血实验结果一致.可见,应用CFD实现溶血的定量计算是可行的,溶血、切应力和暴露时间之间的幂函数模型能较好地反映血泵的溶血性能.  相似文献   

8.
目的应用计算流体动力学方法(computational fluid dynamics,CFD)对离心式双向液力悬浮人工心脏血泵流场进行仿真分析,通过改进叶轮入口结构来改善血液在血泵的流动状态,从而提升其抗溶血性能。方法从影响血泵溶血性能的角度考虑,基于N-S方程和k-ε标准双方程湍流模型,应用软件FLUENT6.3对离心式人工心脏血泵流场进行数值模拟,分析在设计工况下,叶轮入口处的结构变化对泵内流场的影响,以及流场中最大速度与溶血水平之间的关系,并根据流场分析结果对血泵叶轮入口进行优化。结果经过优化,血泵内流场紊乱现象得到改善,影响溶血值的切应力和曝光时间均有所降低,溶血性能得到改善。同时,对于离心式双向液力悬浮血泵,在设计工况下,其流场中最大速度有作为流场优化过程中的直观指标参数的潜力。结论该研究的仿真分析可为离心式双向液力悬浮人工心脏的设计积累一定经验。  相似文献   

9.
离心血泵叶轮形态是决定其内部流场剪切应力致血液细胞损伤的重要因素之一。对具有不同叶轮形态的离心血泵进行流体动力分析及数值溶血预估有助于提高血泵的综合性能。本文采用低雷诺数修正SSTκ-ω湍流模型,对四种不同叶轮形态的离心血泵内部流场进行计算,包括压力场、速度场以及剪切应力场分布等;并运用快速溶血预估模型计算各血泵的标准溶血参数值(NIH)。分析结果表明,虽然四种血泵的压力场分布均符合要求,但对数螺旋线叶轮血泵流道中的涡流和回流得到了明显改善,高剪切应力区域体积只占总体积的0.004%,NIH为0.0089,对血液细胞破坏最小。  相似文献   

10.
血泵是心脏辅助循环装置的核心部件之一,其运行过程中所产生的血栓和溶血超出安全范围将会引发多种并发症,严重者甚至危及病人生命,因此血栓和溶血问题是衡量血泵性能的重要指标也是血泵的重要研究课题。研究表明,溶血主要是由血泵内叶轮的机械运动及血液的复杂流动的高剪切力引起。因此溶血多出现在血液与固壁接触面上及复杂流动的流体问。本次研究的目的是要探索用数值模拟的方法分析离心血泵内部的流场及溶血情况,在研究中通过与上海某医院合作实验采集一种叶片式离心血泵运行过程中的实验数据,再对该叶片式离心血泵内部流场进行数值模拟,通过对比血泵实际运行情况与数值计算结果对其内部血栓和溶血问题进行系统的分析研究,最终数值模拟分析的情况与该血泵在实际运行中的血栓和溶血情况基本相符。通过本次研究探索用数值模拟的方法对血泵的血栓和溶血现象进行分析,特别是对溶血现象进行一定程度的定量分析,此分析结果及分析方法可为血泵优化及临床应用做方法指导之用。  相似文献   

11.
目的应用专业计算流体动力学(computational fluid dynamics,CFD)分析软件FLUENT,对一种具有长短叶片的Sarns离心式血泵的内部流场进行三维数值模拟。方法利用Solidworks软件对Sams型血泵进行三维建模,然后对所建模型网格处理,通过选取标准,κ-ε湍流模型和SIMPLE算法,具体分析了内部流动状态、压力分布、壁面剪切力等流场特性。结果结果表明,该离心泵内部流场分布较不匀,叶片及血泵出口处有回流和旋涡现象,剪切力大小基本处于致红细胞破碎的临界状态之下,高转速下剪切力最大,主要分布在叶轮区域,但暴露时间极短,基本满足血液生理要求。结论该研究为Sarns血泵的进一步优化提供了理论基础。  相似文献   

12.
The relative flow field within the impeller passage of a centrifugal blood pump had been examined using flow visualization technique and computational fluid dynamics. It was found that for a seven-blade radial impeller design, the required flow rate and static pressure rise across the pump could be achieved but the flow field within the blades was highly undesirable. Two vortices were observed near the suction side and these could lead to thrombus formation. Preliminary results presented in this article are part of our overall effort to minimize undesirable flow patterns such flow separation and high shear stress regions within the centrifugal blood pump. This will facilitate the future progress in developing a long-term clinically effective blood pump.  相似文献   

13.
在人工轴流心脏泵的设计过程中,叶片数目的选取对泵的工作条件的影响很大.为了获得轴流心脏泵模型的合理叶片数目,本文采用了六面体结构网格和非结构四面体网格相结合的方法,对整个流体区域进行了网格划分.通过全流道的计算机数值模拟结果,并结合血液泵传输过程中的要求进行分析,最终得到了合适的轴流血液泵叶片数目.计算结果表明,四叶片的转子是目前采用的泵型中效率、受力、流体等各方面的因素综合考察最好的.  相似文献   

14.
XZ-Ⅱ型轴流血泵的流场分析   总被引:6,自引:2,他引:4  
血液破坏是目前影响国产心室辅助装置(ventricular assist device,VAD)不能临床应用的主要障碍.方法本文中采用计算机辅助设计(computer-aided design,CAD)工具设计XZ-Ⅱ型轴流血泵,并用计算流体力学(computationalfluid dynamics,CFD)方法进行泵内流场分析对VAD进行血液相容性研究.结果①血泵的压力流量输出可以满足心室辅助的要求;②流场中的最大剪切率出现在叶轮入口的地方,在整个叶轮端面保持了较高的剪切率,而且随着转速升高,剪切率增大,流量增加,剪切率也增大;③在叶轮相对径向流速以较高速度旋转时,在入口附近,流场保持层流状态,接近转子时,出现周向剪切速度,转子和泵壁之间的流场出现了不对称性,中下壁面出现较大波动,在叶轮附近,流场发生剧烈的变化,在靠近轮毂的地方会出现湍流,叶片之间出现较大的分离涡流,在出口导流叶片与叶轮的相接区域,流动出现局部回流,在狭窄的交接区域,出现流动滞止,流体进入导流叶片时,流动方向在此急剧变化会引起流动分离,从而影响了出口流速和流动的稳定性;④叶轮与出口导叶片接触端面压力变化剧烈.结论叶轮内部、叶轮与导叶片连接部分、出口导叶片内部流场不稳定容易形成涡流和流动停滞,容易形成血栓;叶轮与出口导叶片连接端面以及叶轮内部剪切力较高,容易产生溶血.  相似文献   

15.
It is evident that a pulsatile flow is important for blood circulation because the flow pulsatility can reduce the resistance of peripheral vessels. It is difficult, however, to produce a pulsatile flow with an impeller pump, since blood damage will occur when a pulsatile flow is produced. Further investigation has revealed that the main factor for blood damage is turbulence shear, which tears the membranes of red blood cells, resulting in free release of haemoglobin into the plasma, and consequently leads to haemolysis. Therefore, the question for developing a pulsatile impeller blood pump is: how to produce a pulsatile flow with low haemolysis? The authors have successively developed a pulsatile axial pump and a pulsatile centrifugal pump. In the pulsatile axial pump, the impeller reciprocates axially and rotates simultaneously. The reciprocation is driven by a pneumatic device and the rotation by a dc motor. For a pressure of 40 mm Hg pulsatility, about 50 mm axial reciprocating amplitude of the impeller is desirable. In order to reduce the axial amplitude, the pump inlet and the impeller both have cone-shaped heads, and the gap between the impeller and the inlet pipe changes by only 2 mm, that is the impeller reciprocates up to 2 mm and a pressure pulsatility of 40 mm Hg can be produced. As the impeller rotates with a constant speed, low turbulence in the pump may be expected. In the centrifugal pulsatile pump, the impeller changes its rotating speed periodically; the turbulence is reduced by designing an impeller with twisted vanes which enable the blood flow to change its direction rather than its magnitude during the periodic change of the rotating speed. In this way, a pulsatile flow is produced and the turbulence is minimized. Compared to the axial pulsatile pump, the centrifugal pulsatile pump needs only one driver and thus has more application possibilities. The centrifugal pulsatile pump has been used in animal experiments. The pump assisted the circulation of calves for several months without harm to the blood elements and the organ functions of the experimental animal. The experiments demonstrated that the pulsatile impeller pump is the most efficient pump for assisting heart recovery, because it can produce a pulsatile flow like a diaphragm pump and has no back flow as occurs in a non-pulsatile rotary pump; the former reduces the circulatory resistance and the latter increases the diastole pressure in aorta and thus increases the perfusion of coronary arteries of the natural heart.  相似文献   

16.
Thrombus formation and hemolysis have been linked to the dynamics of blood flow in rotary blood pumps and ventricular assist devices. Hemolysis occurs as the blood passes through the pump housing, and thrombi develop in stagnation and low-velocity regions. The predicted velocities, pressure, and turbulence quantities from the numerical simulation are used to identify regions of high shear stress and internal recirculation. A nimerical technique is described that simulates the hydrodynamic characteristics of a rotary blood pump with a flow rate of 6 l/min at a rotational speed of 3000 RPM. A computational fluid dynamics (CFD) code, CFX 4, is used to solve the time-dependent incompressible Navier-Stokes equations using a transient finite volume method and three-dimensional structured grids. The simulation utilized the sliding mesh capabilities of this numerical code to model the rotating impeller and examine the effect of blade shape on the hydrodynamic performance of the blood pump in terms of pressure rise, flow rates, and energy losses. The first impeller model has six straight channels; the second impeller has six backward-curved channels. The results for two impeller configurations are presented and discussed. The curvedpump design resulted in higher pressure rise and maximum shear stresses than the straight-channel one. In general the paper demonstrates that CFD is an essential numerical tool for optimizing pump performance with the aim of reducing trauma to the blood cells.  相似文献   

17.
刘晨    张惟斌    衡亚光    江启峰    申坤    崔清清   《中国医学物理学杂志》2023,(4):496-502
人工心脏(血泵)一直存在泵体对血细胞剪切力过大和流速过快容易引起溶血的问题。为了研究人体正常血压情况下,血泵内部剪切力和速度场的分布情况,选择圆盘泵叶轮代替传统离心泵叶轮,对两种模型进行数值计算,分析不同叶轮内部剪切力和速度场的分布规律。研究表明传统离心泵内部流速高,叶片表面剪切力大,对血细胞的伤害大。圆盘泵相比传统离心泵,剪切力更小,流场速度分布均匀,流速更小。和传统离心泵相比,不同转速下圆盘泵能降低溶血的发生率。圆盘泵叶片数为6片时,抗溶血性能更好。研究结果为血泵的优化提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号