首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
OBJECTIVE: To examine structural abnormalities in subregions of the prefrontal cortex in elderly patients with depression, the authors explored differences in gray matter, white matter, and CSF volumes by applying a parcellation method based on magnetic resonance imaging (MRI). METHOD: Twenty-four elderly patients with major depression and 19 group-matched comparison subjects were studied with high-resolution MRI. Cortical surface extraction, tissue segmentation, and cortical parcellation methods were applied to obtain volume measures of gray matter, white matter, and CSF in seven prefrontal subregions: the anterior cingulate, gyrus rectus, orbitofrontal cortex, precentral gyrus, superior frontal cortex, middle frontal cortex, and inferior frontal cortex. RESULTS: Highly significant bilateral volume reductions in gray matter were observed in the anterior cingulate, the gyrus rectus, and the orbitofrontal cortex. Depressed patients also exhibited significant bilateral white matter volume reductions and significant CSF volume increases in the anterior cingulate and the gyrus rectus. Finally, the depressed group showed significant CSF volume reductions in the orbitofrontal cortex relative to the comparison subjects. None of the other regions examined revealed significant structural abnormalities. CONCLUSIONS: The prominent bilateral gray matter deficits in the anterior cingulate and the gyrus rectus as well as the orbitofrontal cortex may reflect disease-specific modifications of elderly depression. The differential pattern of abnormalities detected in the white matter and CSF compartments imply that distinct etiopathological mechanisms might underlie the structural cortical changes in these regions.  相似文献   

2.
OBJECTIVE: The authors used magnetic resonance imaging and an image analysis technique known as cortical pattern matching to map cortical gray matter deficits in elderly depressed patients with an illness onset after age 60 (late-onset depression). METHOD: Seventeen patients with late-onset depression (11 women and six men; mean age=75.24, SD=8.52) and 17 group-matched comparison subjects (11 women and six men; mean age=73.88, SD=7.61) were included. Detailed spatial analyses of gray matter were conducted across the entire cortex by measuring local proportions of gray matter at thousands of homologous cortical surface locations in each subject, and these patterns were matched across subjects by using elastic transformations to align sulcal topography. To visualize regional changes, statistical differences were mapped at each cortical surface location in three dimensions. RESULTS: The late-onset depression group exhibited significant gray matter deficits in the right lateral temporal cortex and the right parietal cortex, where decreases were most pronounced in sensorimotor regions. The statistical maps also showed gray matter deficits in the same regions of the left hemisphere that approached significance after permutation testing. No significant group differences were detected in frontal cortices or any other anatomical region. CONCLUSIONS: Regionally specific decreases of gray matter occur in late-onset depression, supporting the hypothesis that this subset of elderly patients with major depression presents with certain unique neuroanatomical abnormalities that may differ from patients with an earlier onset of illness.  相似文献   

3.
Reduced volume of orbitofrontal cortex in major depression.   总被引:17,自引:0,他引:17  
BACKGROUND: Functional neuroimaging studies have implicated dysfunction of orbitofrontal cortex in the symptoms of depression, and a recent postmortem study of depressed patients found reduced density of neurons and glia in this area. The purpose of this study was to measure volume of orbitofrontal cortex and other frontal cortical subregions in patients with major depression. METHODS: Magnetic resonance imaging was used to measure volume of the orbitofrontal cortex and other frontal cortical regions in patients with major depression in remission (n = 15) and comparison subjects (n = 20). RESULTS: Patients with depression had a statistically significant 32% smaller medial orbitofrontal (gyrus rectus) cortical volume, without smaller volumes of other frontal regions including anterior cingulate Brodmann's area 24 (subgenual gyrus), anterior cingulate Brodmann's area 32, subcallosal gyrus (Brodmann's area 25), or whole brain volume. The findings were significant after statistically controlling for brain size. CONCLUSIONS: These findings are consistent with smaller orbitofrontal cortical volume in depression.  相似文献   

4.
BACKGROUND: Previous structural studies of the frontal lobe in schizophrenia have had somewhat inconsistent results, but most of them have measured the frontal lobe as a single brain structure. To investigate more specific abnormalities in frontal subregions, we measured gray matter volume and cortical surface size in 10 subregions in drug-naive patients during the early stages of the illness. METHODS: Magnetic resonance imaging was used to measure frontal subregions in 34 healthy male volunteers, and 26 male, drug-naive schizophrenia patients at early stages of the illness. Frontal subregions were manually traced using our locally developed parcellation method. RESULTS: Patients with schizophrenia had a significant deficit in cortical surface size in the right straight gyrus and left orbitofrontal cortex. No differences were found in gray matter volumes. CONCLUSIONS: Frontal structural abnormalities found in drug-naive schizophrenic patients appear to be subtle and circumscribed to ventral portions. Anomalies in the cortical surface size suggest neurodevelopmental abnormalities might occur during the early stages of the gyrogenesis. Further investigations are needed to explore the implications of paralimbic ventral frontal regions (i.e., straight gyrus and orbitofrontal cortex) in the pathophysiology of schizophrenia.  相似文献   

5.
OBJECTIVE: Apathy is one of the most common late-life neuropsychiatric syndromes. The objective of our study was to examine the neuroanatomical correlates of apathy in older subjects with and without geriatric major depression (MDD). METHODS: Eighty-four subjects (43 patients with MDD and 41 normal comparison subjects) underwent comprehensive neuropsychiatric examination, physical examination, and high-resolution magnetic resonance imaging (MRI) brain scans on a 1.5T GE MRI scanner. Apathy was assessed using the Apathy Evaluation Scale. MRI image analyses included cortical surface extraction, tissue segmentation, and cortical parcellation methods to measure the gray and white matter volumes in two prefrontal subregions: the anterior cingulate and orbitofrontal cortex. RESULTS: The depressed group had smaller orbitofrontal gray matter volumes compared to the age-matched normal comparison group. The severity of apathy was associated with the decreased gray matter volume in the right anterior cingulate gray matter volumes using partial correlation and regression analyses after controlling for age, sex, and diagnosis. CONCLUSION: Apathy and depression were associated with different anatomical correlates in the prefrontal regions implicated in the regulation of cognition and emotion. Our findings offer new understanding of the neuroanatomical characteristics of apathy and depression in late life, and have broad implications for the neurobiology of behavior.  相似文献   

6.
BACKGROUND: Late life depression is associated with volumetric reductions of gray matter and increased prevalence of subcortical white matter lesions. Previous studies have shown a poorer treatment outcome in those with more severe structural brain abnormalities. In this study, quantitative and semi-quantitative magnetic resonance imaging (MRI) measures were studied in relation to response to a 12-week controlled antidepressant monotherapy trial. METHODS: MRI (1.5 T) brain scans of 42 elderly inpatients with major depression, of which 23 were non-responder to a controlled 12-week antidepressant monotherapy trial, were acquired. In addition, clinical outcome was assessed after a one year period. Measures were volumes of global cerebral and subcortical structures. RESULTS: After controlling for confounding, no differences were found between non-responders and responders after 12 weeks and after one year in volumes of cerebral gray and white matter, orbitofrontal cortex, hippocampus and white matter lesions. CONCLUSIONS: Structural brain measures associated with late life depression may not be related to short-term treatment response.  相似文献   

7.
OBJECTIVES: Depressed elderly patients with and without antidepressant exposure were compared to normal controls to examine the effects of prior antidepressant exposure on regional brain gray matter volumes using magnetic resonance imaging (MRI). METHOD: The study was conducted from October 1999 to January 2003. Patients and controls were closely matched by age and education. They underwent comprehensive neuropsychiatric and physical examinations. Measures of the total frontal lobe and the frontal gray and white matter volumes corrected by the intracranial volume were obtained using MRI, together with clinical measures of medical burden. Historical information about prior exposure to antidepressant drugs was collected using multiple information sources. The groups were compared using multivariate analyses of covariance, controlling for age, sex, and medical burden. RESULTS: The study sample comprised 41 patients who met the DSM-IV criteria for major depressive disorder (32 women; 11 antidepressant exposure and 30 drug-naive; mean age 70.5 years) and 41 controls (20 women; mean age 72.2 years). In the multivariate analysis, the depressed group had smaller corrected orbitofrontal cortex (OFC) total and gray matter volumes compared to the controls (p < .01). However, depressed patients with prior antidepressant exposure had larger OFC gray matter volumes compared to drug-naive depressed patients, but smaller than those in normal controls (p = .005). This effect was not explained by the group differences in sex ratio, age at onset of depression, or the number or duration of depressive episodes. CONCLUSIONS: We observed larger OFC regional volumes in depressed patients exposed to antidepressants compared to the drug-naive depressed subjects, but smaller than those in age-matched controls. Antidepressant exposure may protect against gray matter loss in geriatric depression.  相似文献   

8.
In this study, we explored to what extent brain abnormalities can be identified in specific brain structures of patients suffering from late onset depression. We examined the structural difference in regional gray and white matter volume between 14 community-dwelling patients suffering from geriatric depression and 20 age-matched non-depressed normal subjects by voxel-based morphometry (VBM) based on magnetic resonance imaging. All subjects also underwent an extensive neuropsychological assessment. Compared with control subjects, patients with depression were impaired in measures of verbal and visual memory, construction, executive ability, and information-processing speed. VBM of gray matter revealed a significant decrease of volume in the right rostral hippocampus, in the right amygdala and in the medial orbito-frontal cortex (gyrus rectus) bilaterally. In the correlation analysis of gray matter volume with the score of the geriatric depression scale, we observed a negative correlation with the medial orbito-frontal cortex (gyrus rectus) bilaterally. There were no differences in white matter volumes between patients with depression and healthy control subjects. The most important limitation of this study was sample size. A larger sample size may have improved detection of changes not reaching significance. Furthermore, our results may not be generalizable across depression severity or to hospitalized patients. The findings are consistent with our hypothesis that depression in the elderly is associated with local gray matter dysfunction.  相似文献   

9.
BACKGROUND: This report provides histopathological evidence to support prior neuroimaging findings of decreased volume and altered metabolism in the frontal cortex in major depressive disorder. METHODS: Computer-assisted three-dimensional cell counting was used to reveal abnormal cytoarchitecture in left rostral and caudal orbitofrontal and dorsolateral prefrontal cortical regions in subjects with major depression as compared to psychiatrically normal controls. RESULTS: Depressed subjects had decreases in cortical thickness, neuronal sizes, and neuronal and glial densities in the upper (II-IV) cortical layers of the rostral orbitofrontal region. In the caudal orbitofrontal cortex in depressed subjects, there were prominent reductions in glial densities in the lower (V-VI) cortical layers that were accompanied by small but significant decreases in neuronal sizes. In the dorsolateral prefrontal cortex of depressed subjects marked reductions in the density and size of neurons and glial cells were found in both supra- and infragranular layers. CONCLUSIONS: These results reveal that major depression can be distinguished by specific histopathology of both neurons and glial cells in the prefrontal cortex. Our data will contribute to the interpretation of neuroimaging findings and identification of dysfunctional neuronal circuits in major depression.  相似文献   

10.
Reduction of orbital frontal cortex volume in geriatric depression.   总被引:3,自引:0,他引:3  
BACKGROUND: Postmortem studies have documented abnormalities in the medial orbital frontal cortex in depressed patients. In this study we evaluated whether atrophy of this region can be identified in older depressed patients using magnetic resonance imaging. METHODS: Twenty elderly patients meeting DSM-IV criteria for major depression and 20 matched control subjects were studied. The orbital frontal cortex was measured in both hemispheres using magnetic resonance imaging. RESULTS: Depressive patients had reduced volume in the total orbital frontal cortex, right orbital frontal cortex, and left orbital frontal cortex. CONCLUSIONS: Our finding of a reduction in orbital frontal cortex volume in both sides of the brain suggests that this region of the brain may have a critical role in the development of depression and raises questions about the etiology of the changes.  相似文献   

11.
OBJECTIVES: To investigate the disruption of neural circuits in the frontal lobes and limbic structures in late-life depressed patients compared with healthy controls, and to examine the correlation between the degree of microstructural abnormalities of white matter and clinical symptom severity in late-life depression. METHODS: Thirteen patients with late-life depression and matched control subjects underwent diffusion tensor imaging. Fractional anisotropy (FA), an index of the integrity of white matter tracts, was determined in the white matter of frontal, temporal, and occipital brain regions and the corpus callosum. RESULTS: A significant reduction was found in white matter FA values of widespread regions of the frontal and temporal lobes of depressed patients. Also, there was some evidence suggesting that white matter FA values of the inferior frontal brain region are inversely related to severity of depression. CONCLUSIONS: These results suggest the possible loss of integrity within frontal and temporal white matter fibre tracts and implicate the orbitofrontal circuit in symptom severity in late-life depression.  相似文献   

12.
BACKGROUND: The dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) are critical for mood regulation. Alterations in the white matter connections of these regions may impair their role in mood regulation and increase the risk of developing depression. This study used diffusion tensor imaging to examine for white matter microstructural abnormalities of these regions and of central white matter structures in late-life depression. METHODS: One hundred six elderly depressed subjects and eighty-four elderly nondepressed subjects underwent clinical assessment and diffusion tensor imaging. The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in regions of interest placed in the white matter of the DLPFC, ACC, corpus callosum, and internal capsule. Differences between groups were assessed, controlling for age, sex, and total cerebral volume. RESULTS: After controlling for covariates, depressed subjects had significantly lower FA values in white matter of the right ACC, bilateral superior frontal gyri, and left middle frontal gyrus. There were no significant differences in ADC values. CONCLUSIONS: Lower FA, representing lower tissue organization, is observed in depressed elders in the DLPFC and right ACC. These findings support the hypothesis that altered connectivity between brain regions contributes to the risk of depression.  相似文献   

13.
Objective:  To investigate neural activity in prefrontal cortex and amygdala during bipolar depression.
Methods:  Eleven bipolar I depressed and 17 normal subjects underwent functional magnetic resonance imaging (fMRI) while performing a task known to activate prefrontal cortex and amygdala. Whole brain activation patterns were determined using statistical parametric mapping (SPM) when subjects matched faces displaying neutral or negative affect (match condition) or matched a geometric form (control condition). Contrasts for each group for the match versus control conditions were used in a second-level random effects analysis.
Results:  Random effects between-group analysis revealed significant attenuation in right and left orbitofrontal cortex (BA47) and right dorsolateral prefrontal cortex (DLPFC) (BA9) in bipolar depressed subjects. Additionally, random effects analysis showed a significantly increased activation in left lateral orbitofrontal cortex (BA10) in the bipolar depressed versus control subjects. Within-group contrasts demonstrated significant amygdala activation in the controls and no significant amygdala activation in the bipolar depressed subjects. The amygdala between-group difference, however, was not significant.
Conclusions:  Bipolar depression is associated with attenuated bilateral orbitofrontal (BA47) activation, attenuated right DLPFC (BA9) activation and heightened left orbitofrontal (BA10) activation. BA47 attenuation has also been reported in mania and may thus represent a trait feature of the disorder. Increased left prefrontal (BA10) activation may be a state marker to bipolar depression. Our findings suggest dissociation between mood-dependent and disease-dependent functional brain abnormalities in bipolar disorder.  相似文献   

14.
Regionally localized thinning of the cerebral cortex in schizophrenia   总被引:22,自引:0,他引:22  
BACKGROUND: Schizophrenia is characterized by small reductions in cortical gray matter volume, particularly in the temporal and prefrontal cortices. The question of whether cortical thickness is reduced in schizophrenia has not been addressed using magnetic resonance imaging (MRI) techniques. Our objectives were to test the hypothesis that cortical thinning in patients with schizophrenia (relative to control subjects) is greater in temporal and prefrontal regions of interest (ROIs) than in control ROIs (superior parietal, calcarine, postcentral, central, and precentral cortices), and to obtain an unbiased estimate of the distribution of cortical thinning in patients (relative to controls) by constructing mean and statistical cortical thickness difference maps. METHODS: Participants included 33 right-handed outpatients receiving medication and meeting DSM-IV criteria for schizophrenia and 32 healthy volunteers, matched on age and parental socioeconomic status. After high-resolution MRI scans, models of the gray-white and pial surfaces were generated for each individual's cortex, and the distance between these 2 surfaces was used to compute cortical thickness. A surface-based averaging technique that aligned the main cortical folds across individuals allowed between-group comparisons of thickness within ROIs, and at multiple, uniformly sampled loci across the cortical ribbon. RESULTS: Relative to controls, patients showed greater cortical thinning in temporal-prefrontal ROIs than in control ROIs, as revealed by a significant (P<.009) interaction between group and region type. Cortical thickness difference maps revealed significant (at P<.05, corrected) thinning within the orbitofrontal cortices bilaterally; the inferior frontal, inferior temporal, and occipitotemporal cortices on the left; and within the medial temporal and medial frontal cortices on the right. Superior parietal and primary somatosensory and motor cortices were relatively spared, even at subthreshold significance levels. CONCLUSIONS: Patients with chronic schizophrenia showed widespread cortical thinning that particularly affected the prefrontal and temporal cortices. This thinning might reflect underlying neuropathological abnormalities in cortical structure.  相似文献   

15.
OBJECTIVE: The authors investigated the relationship between depression duration and cerebral gray matter volume in female patients with recurrent major depressive disorder. METHOD: Magnetic resonance imaging was used to measure intracranial and total brain volumes as well as gray matter and white matter volumes of the cerebrum; frontal, temporal, parietal, and occipital lobes; cerebellum; and the lateral and third ventricles in 23 female patients with DSM-IV major depression. RESULTS: Correlation and regression analyses showed a significant relationship between total illness duration and cerebral gray matter (including cortical lobe) volume after correction for intracranial volume and age. CONCLUSIONS: Depressive states may lead to changes in global cerebral gray matter volume.  相似文献   

16.
BACKGROUND: Elderly depressed patients have more vascular hyperintensities in frontal white matter and basal ganglia than elderly control subjects. Cell pathology that might be related to increased vascular hyperintensities has not been examined. METHODS: Postmortem samples from the orbitofrontal cortex (ORB) were collected in 15 elderly subjects with major depressive disorder (MDD) and 11 age-matched control subjects. Cell packing density of neurons and glia, density of pyramidal and nonpyramidal neurons, and cortical and laminar width were measured. RESULTS: The overall (layers I-VI) packing density of ORB neurons with pyramidal morphology was markedly decreased in MDD (by 30%) as compared with control subjects. Further laminar analysis of pyramidal neurons density revealed significant reductions in layers IIIc and V in MDD. In contrast, in MDD the density of nonpyramidal neurons and glia and cortical and laminar width were comparable to control values. CONCLUSIONS: In elderly subjects with depression, the density of pyramidal neurons in the ORB was particularly low in cortical layers V and III, the origin of prefronto-striatal and prefronto-cortical and prefronto-amygdalar projections. Degeneration of neurons furnishing these projections might be related to the white matter hyperintensities previously observed. Neuronal pathology seems to be more severe in elderly than in younger subjects with MDD.  相似文献   

17.
BACKGROUND: Prior studies have demonstrated reduced frontal lobe volumes in depressed adolescents. In this study, frontal lobe gray and white matter volumes in adolescents with major depressive disorder were evaluated. METHODS: Nineteen depressed and thirty-eight healthy comparison adolescents were recruited for a magnetic resonance imaging study. Images were segmented into gray matter, white matter, and cerebrospinal fluid. Morphometric measurements of the whole brain and frontal lobe region were completed. RESULTS: Whole brain volumes were significantly smaller in depressed subjects compared with the healthy comparison subjects. Significantly smaller frontal white matter volumes and significantly larger frontal gray matter volumes were found in the depressed subjects, after controlling for age and whole brain volume. CONCLUSIONS: These results are consistent with the hypothesis that a deficit in frontal volume exists during cortical development in adolescents with depression. Further studies are needed to assess whether volume differences resolve over time and the extent to which these differences influence response to treatment.  相似文献   

18.
BACKGROUND: Alzheimer disease (AD) and normal aging result in cortical gray matter volume deficits. The extent to which the remaining cortex is functionally compromised can be estimated in vivo with magnetic resonance spectroscopic imaging. OBJECTIVE: To assess the effects of age and dementia on gray matter and white matter concentrations of 3 metabolites visible in the proton spectrum: N-acetyl compounds, present only in living neurons; creatine plus phosphocreatine, reflecting high-energy phosphate metabolism; and choline, increasing with membrane synthesis and degradation. METHOD: Fifteen healthy young individuals, 19 healthy elderly individuals, and 16 patients with AD underwent 3-dimensional magnetic resonance spectroscopic imaging and memory and language testing. RESULTS: Gray matter N-acetyl compound concentrations (signal intensity corrected for the amount of brain tissue contributing to the magnetic resonance spectroscopic imaging signal) was significantly reduced only in patients with AD, even though both the AD and elderly control groups had substantial gray matter volume deficits relative to the young control group. Both the healthy elderly and AD groups had abnormally high gray matter creatine plus phosphocreatine concentrations. Gray matter choline concentrations were higher in the elderly than the younger controls, and even higher in the AD group than in the elderly control group. Functional significance of these findings was supported by correlations between poorer performance on recognition memory tests and lower gray matter N-acetyl compounds in elderly controls and higher gray matter creatine plus phosphocreatine and choline concentrations in patients with AD. CONCLUSION: Cortical gray matter volume deficits in patients with AD are accompanied by disease-related increases in gray matter choline concentrations suggestive of cellular degeneration and reduced N-acetyl compound concentrations, with possible effects on behavioral function.  相似文献   

19.
Postmortem studies have documented abnormalities in the dorsolateral prefrontal cortex (dlPFC) in depressed subjects. In this study we used magnetic resonance imaging to test for dlPFC volume differences between older depressed and non-depressed individuals. Eighty-eight subjects meeting DSM IV criteria for major depressive disorder and thirty-five control subjects completed clinical evaluations and cranial 3T magnetic resonance imaging. After tissue types were identified using an automated segmentation process, the dlPFC was measured in both hemispheres using manual delineation based on anatomical landmarks. Depressed subjects had significantly lower gray matter in the left and right dorsolateral prefrontal cortex (standardized to cerebral parenchyma) after controlling for age and sex. Our study confirmed the reduction of dorsolateral prefrontal cortex in elderly depressed subjects, especially in the gray matter. These regional abnormalities may be associated with psychopathological changes in late-life depression.  相似文献   

20.
OBJECTIVE: Structural neuroimaging studies have suggested an association between schizophrenia and abnormalities in brain morphology such as ventricular enlargement and differences in gray matter distribution. Less consistently reported are findings of regional abnormalities such as selective differences in thalamic volume. The authors applied an unbiased technique to test for differences in cerebral morphometry between patients with schizophrenia and matched comparison subjects. METHOD: T(1)-weighted images from 20 schizophrenic patients and matched comparison subjects were processed by using optimized automated voxel-based morphometry within multiple linear regression analyses. RESULTS: Global differences in gray matter volume were seen between the schizophrenic and comparison subjects, with selective regional gray matter differences noted in the mediodorsal thalamus and across cortical regions, including the ventral and medial prefrontal cortices. Within the schizophrenic subjects, a relationship was observed between gray matter volume loss in the medial prefrontal cortex and a positive family history of schizophrenia. There was no significant difference between patients and comparison subjects in rates of proportional gray matter reduction with age. CONCLUSIONS: These observations confirm an association between thalamocortical morphometric abnormalities and schizophrenia, consistent with theoretical models of primary pathoetiological dysfunction in filtering, integration, and information transfer processes in patients with schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号