首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
《Vaccine》2020,38(31):4783-4791
A novel coronavirus (CoV), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 in Wuhan, China and has since spread as a global pandemic. Safe and effective vaccines are thus urgently needed to reduce the significant morbidity and mortality of Coronavirus Disease 2019 (COVID-19) disease and ease the major economic impact. There has been an unprecedented rapid response by vaccine developers with now over one hundred vaccine candidates in development and at least six having reached clinical trials. However, a major challenge during rapid development is to avoid safety issues both by thoughtful vaccine design and by thorough evaluation in a timely manner. A syndrome of “disease enhancement” has been reported in the past for a few viral vaccines where those immunized suffered increased severity or death when they later encountered the virus or were found to have an increased frequency of infection. Animal models allowed scientists to determine the underlying mechanism for the former in the case of Respiratory syncytial virus (RSV) vaccine and have been utilized to design and screen new RSV vaccine candidates. Because some Middle East respiratory syndrome (MERS) and SARS-CoV-1 vaccines have shown evidence of disease enhancement in some animal models, this is a particular concern for SARS-CoV-2 vaccines. To address this challenge, the Coalition for Epidemic Preparedness Innovations (CEPI) and the Brighton Collaboration (BC) Safety Platform for Emergency vACcines (SPEAC) convened a scientific working meeting on March 12 and 13, 2020 of experts in the field of vaccine immunology and coronaviruses to consider what vaccine designs could reduce safety concerns and how animal models and immunological assessments in early clinical trials can help to assess the risk. This report summarizes the evidence presented and provides considerations for safety assessment of COVID-19 vaccine candidates in accelerated vaccine development.  相似文献   

2.
进入21世纪以来,严重急性呼吸综合征冠状病毒(severe acute respiratory syndrome coronavirus, SARS-CoV)、中东呼吸综合征冠状病毒(Middle East respiratory syndromecoronavirus, MERS-CoV)及最新出现的严重急性呼吸综合征冠状病毒-2(severe acute respiratory syndrome coronavirus-2, SARS-CoV-2)等高致病性冠状病毒先后在人群中暴发流行,成为影响地区、国家乃至全球的重大公共卫生事件,研发特异性疫苗成为防控病毒流行的当务之急。本文综述了SARS-CoV和MERS-CoV疫苗的研究进展,望对SARS-CoV-2疫苗研制提供参考。  相似文献   

3.
The decades-long effort to produce a workable HIV vaccine has hardly been a waste of public and private resources. To the contrary, the scientific know-how acquired along the way has served as the critical foundation for the development of vaccines against the novel, pandemic SARS-CoV-2 virus. We retell the real-world story of HIV vaccine research – with all its false leads and missteps – in a way that sheds light on the current state of the art of antiviral vaccines. We find that HIV-related R&D had more than a general spillover effect. In fact, the repeated failures of phase 2 and 3 clinical trials of HIV vaccine candidates have served as a critical stimulus to the development of successful vaccine technologies today. We rebut the counterargument that HIV vaccine development has been no more than a blind alley, and that recently developed vaccines against COVID-19 are really descendants of successful vaccines against Ebola, MERS, and SARS. These successful vaccines likewise owe much to the vicissitudes of HIV vaccine development. We then discuss how the failures of HIV vaccine development have taught us how adapt SARS-CoV-2 vaccines to immune escape from emerging variants. Finally, we inquire whether recent advances in the development of vaccines against SARS-CoV-2 might in turn further the development of an HIV vaccine - what we describe as a reverse spillover effect.  相似文献   

4.
Herpes simplex virus type 2 (HSV-2) infects 530 million people, is the leading cause of genital ulcer disease, and increases the risk of HIV-1 acquisition. Although several candidate vaccines have been promising in animal models, prophylactic and therapeutic vaccines have not been effective in clinical trials thus far. Null results from the most recent prophylactic glycoprotein D2 subunit vaccine trial suggest that we must reevaluate our approach to HSV-2 vaccine development. We discuss HSV-2 pathogenesis, immunity, and vaccine efforts to date, as well as the current pipeline of candidate vaccines and design of trials to evaluate new vaccine constructs.  相似文献   

5.
《Vaccine》2023,41(15):2615-2629
The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit-risk assessment of several vaccine platform technologies, including protein subunit vaccines. This article uses the BRAVATO template to review the features of the MVC-COV1901 vaccine, a recombinant protein subunit vaccine based on the stabilized pre-fusion SARS-CoV-2 spike protein S-2P, adjuvanted with CpG 1018 and aluminum hydroxide, manufactured by Medigen Vaccine Biologics Corporation in Taiwan. MVC-COV1901 vaccine is indicated for active immunization to prevent COVID-19 caused by SARS-CoV-2 in individuals 12 years of age and older. The template offers details on basic vaccine information, target pathogen and population, characteristics of antigen and adjuvant, preclinical data, human safety and efficacy data, and overall benefit-risk assessment.The clinical development program began in September 2020 and based on demonstration of favorable safety and immunogenicity profiles in 11 clinical trials in over 5,000 participants, it has been approved for emergency use based on immunobridging results for adults in Taiwan, Estwatini, Somaliland, and Paraguay. The main clinical trials include placebo-controlled phase 2 studies in healthy adults (CT-COV-21), adolescents (CT-COV-22), and elderly population (CT-COV-23) as well as 3 immunobridging phase 3 trials (CT-COV-31, CT-COV-32, and CT-COV-34) in which MVC-COV1901 was compared to AZD1222. There are also clinical trials studying MVC-COV1901 as homologous and heterologous boosters (CT-COV-24 and CT-COV-25).The totality of evidence based on ∼3 million vaccinees to date includes a mostly clean safety profile, with adverse events mostly being mild and self-limiting in both clinical development and post-marketing experience, proven immunogenic response, and real-world effectiveness data. The immunogenic profile demonstrates that MVC-COV1901 induces high levels of neutralizing and binding antibodies against SARS-CoV-2. There is a dose-dependent response and a significant correlation between binding and neutralizing antibody activity. Antigen-specific T-cell responses, particularly a Th1-biased immune response characterized by high levels of interferon gamma and IL-2 cytokines, have also been observed. Coupled with this, MVC-COV1901 has favorable thermostability and better safety profiles when compared to other authorized vaccines from different platforms, which make it potentially a good candidate for vaccine supply chains in global markets.  相似文献   

6.
Novel SARS coronavirus (SARS-CoV-2) has caused a pandemic condition worldwide. It has been declared as a public health emergency of international concern by WHO in a very short span of time. The community transmission of this highly infectious virus has severely affected various parts of China, Italy, Spain, India, and USA, among others. The prophylactic solution against SARS-CoV-2 infection is challenging due to the high mutation rate of its RNA genome. Herein, we exploited a next-generation vaccinology approach to construct a multi-epitope vaccine candidate against SARS-CoV-2 that is predicted to have high antigenicity, safety, and efficacy to combat this deadly infectious agent. The whole proteome was scrutinized for the screening of highly conserved, antigenic, non-allergen, and non-toxic epitopes having high population coverage that can elicit both humoral and cellular mediated immune response against COVID-19 infection. These epitopes along with four different adjuvants, were utilized to construct a multi-epitope-vaccine candidate that can generate strong immunological memory response having high efficacy in humans. Various physiochemical analyses revealed the formation of a stable vaccine product having a high propensity to form a protective solution against the detrimental SARS-CoV-2 strain with high efficacy. The vaccine candidate interacted with immunological receptor TLR3 with a high affinity depicting the generation of innate immunity. Further, the codon optimization and in silico expression show the plausibility of the high expression and easy purification of the vaccine product. Thus, this present study provides an initial platform for the rapid generation of an efficacious protective vaccine for combating COVID-19.  相似文献   

7.
A review of vaccine research and development: tuberculosis   总被引:8,自引:0,他引:8  
Girard MP  Fruth U  Kieny MP 《Vaccine》2005,23(50):5725-5731
Substantial progress has been made during the past 15 years towards the development of improved vaccines for tuberculosis. This is due to advances in the characterization of genes and antigens of Mycobacterium tuberculosis (M. tb), aided by the availability of genome sequences of different mycobacterial species and M. tb isolates and to greater understanding of protective immune responses to the pathogen in both animals and humans. More than one hundred candidate vaccines have been tested in animal models, representing all of the major vaccine design strategies, and some have now moved into clinical trials. This review summarizes recent advances in tuberculosis vaccine development.  相似文献   

8.
Roberts A  Wood J  Subbarao K  Ferguson M  Wood D  Cherian T 《Vaccine》2006,24(49-50):7056-7065
Severe acute respiratory syndrome (SARS) emerged in the Guangdong province of China in late 2002 and spread to 29 countries. By the end of the outbreak in July 2003, the CDC and WHO reported 8437 cases with a 9.6% case fatality rate. The disease was caused by a previously unrecognized coronavirus, SARS-CoV. Drawing on experience with animal coronavirus vaccines, several vaccine candidates have been developed and evaluated in pre-clinical trials. Available data suggest that vaccines should be based on the the 180kDa viral spike protein, S, the only significant neutralization antigen capable of inducing protective immune responses in animals. In the absence of clinical cases of SARS, candidate vaccines should be evaluated for efficacy in animal models, and although it is uncertain whether the United States Food and Drug Administration's "animal rule" would apply to licensure of a SARS vaccine, it is important to develop standardized animal models and immunological assays in preparation for this eventuality. This report summarizes the recommendations from a WHO Technical Meeting on Animal Models and Antibody Assays for Evaluating Candidate SARS Vaccines held on 25-26 August 2005 in South Mimms, UK, provides guidance on the use of animal models, and outlines the steps to develop standard reagents and assays for immunological evaluation of candidate SARS vaccines.  相似文献   

9.
《Vaccine》2021,39(30):4108-4116
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), initially originated in China in year 2019 and spread rapidly across the globe within 5 months, causing over 96 million cases of infection and over 2 million deaths. Huge efforts were undertaken to bring the COVID-19 vaccines in clinical development, so that it can be made available at the earliest, if found to be efficacious in the trials. We developed a candidate vaccine ZyCoV-D comprising of a DNA plasmid vector carrying the gene encoding the spike protein (S) of the SARS-CoV-2 virus. The S protein of the virus includes the receptor binding domain (RBD), responsible for binding to the human angiotensin converting enzyme (ACE-2) receptor. The DNA plasmid construct was transformed into E. coli cells for large scale production. The immunogenicity potential of the plasmid DNA has been evaluated in mice, guinea pig, and rabbit models by intradermal route at 25, 100 and 500 µg dose. Based on the animal studies proof-of-concept has been established and preclinical toxicology (PCT) studies were conducted in rat and rabbit model. Preliminary animal study demonstrates that the candidate DNA vaccine induces antibody response including neutralizing antibodies against SARS-CoV-2 and also elicited Th-1 response as evidenced by elevated IFN-γ levels.  相似文献   

10.
《Vaccine》2021,39(48):7001-7011
COVID-19 pandemic has severely impacted the public health and social economy worldwide. A safe, effective, and affordable vaccine against SARS-CoV-2 infections/diseases is urgently needed. We have been developing a recombinant vaccine based on a prefusion-stabilized spike trimer of SARS-CoV-2 and formulated with aluminium hydroxide and CpG 7909. The spike protein was expressed in Chinese hamster ovary (CHO) cells, purified, and prepared as a stable formulation with the dual adjuvant. Immunogenicity studies showed that candidate vaccines elicited robust neutralizing antibody responses and substantial CD4+ T cell responses in both mice and non-human primates. And vaccine-induced neutralizing antibodies persisted at high level for at least 6 months. Challenge studies demonstrated that candidate vaccine reduced the viral loads and inflammation in the lungs of SARS-CoV-2 infected golden Syrian hamsters significantly. In addition, the vaccine-induced antibodies showed cross-neutralization activity against B.1.1.7 and B.1.351 variants. These data suggest candidate vaccine is efficacious in preventing SARS-CoV-2 infections and associated pneumonia, thereby justifying ongoing phase I/II clinical studies in China (NCT04982068 and NCT04990544).  相似文献   

11.
《Vaccine》2023,41(11):1892-1901
Owing to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, the development of effective and safe vaccines has become a priority. The measles virus (MeV) vaccine is an attractive vaccine platform as it has been administered to children for more than 40 years in over 100 countries. In this study, we developed a recombinant MeV expressing the full-length SARS-CoV-2 spike protein (rMeV-S) and tested its efficacy using mouse and hamster models. In hCD46Tg mice, two-dose rMeV-S vaccination induced higher Th1 secretion and humoral responses than one-dose vaccination. Interestingly, neutralizing antibodies induced by one-dose and two-dose rMeV-S immunization effectively blocked the entry of the α, β, γ, and δ variants of SARS-CoV-2. Furthermore, two-dose rMeV-S immunization provided complete protection against SARS-CoV-2 in the hamster model. These results suggest the potential of rMeV-S as a vaccine candidate for targeting SARS-CoV-2 and its variants.  相似文献   

12.
《Vaccine》2022,40(37):5529-5536
Vaccine development is a complex process, starting with selection of a promising immunogen in the discovery phase, followed by process development in the preclinical phase, and later by clinical trials in tandem with process improvements and scale up. A large suite of analytical techniques is required to gain understanding of the vaccine candidate so that a relevant immunogen is selected and subsequently manufactured consistently throughout the lifespan of the product. For viral vaccines, successful immunogen production is contingent on its maintained antigenicity and/or infectivity, as well as the ability to characterize these qualities within the context of the process, formulation, and clinical performance. In this report we show the utility of flow virometry during preclinical development of a Covid 19 vaccine candidate based on SARS-CoV-2 spike (S) protein expressed on vesicular stomatitis virus (VSV). Using a panel of monoclonal antibodies, we were able to detect the S protein on the surface of the recombinant VSV virus, monitor the expression levels, detect differences in the antigen based on S protein sequence and after virus inactivation, and monitor S protein stability. Collectively, flow virometry provided important data that helped to guide preclinical development of this vaccine candidate.  相似文献   

13.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for one of the worst pandemics in modern history. Several prevention and treatment strategies have been designed and evaluated in recent months either through the repurposing of existing treatments or the development of new drugs and vaccines. In this study, we show that L-carnitine tartrate supplementation in humans and rodents led to significant decreases of key host dependency factors, notably angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and Furin, which are responsible for viral attachment, viral spike S-protein cleavage, and priming for viral fusion and entry. Interestingly, pre-treatment of Calu-3, human lung epithelial cells, with L-carnitine tartrate led to a significant and dose-dependent inhibition of the infection by SARS-CoV-2. Infection inhibition coincided with a significant decrease in ACE2 mRNA expression levels. These data suggest that L-carnitine tartrate should be tested with appropriate trials in humans for the possibility to limit SARS-CoV-2 infection.  相似文献   

14.
《Vaccine》2022,40(32):4440-4452
Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prevention of SARS-CoV-2 transmission has become a global priority. Previously, we showed that a protein subunit vaccine that was developed based on the fusion of the SARS-CoV-2 receptor-binding domain (RBD) to the Fc portion of human IgG1 (RBD-Fc), produced in Nicotiana benthamiana, and adjuvanted with alum, namely, Baiya SARS-CoV-2 Vax 1, induced potent immunological responses in both mice and cynomolgus monkeys. Hence, this study evaluated the protective efficacy, safety, and toxicity of Baiya SARS-CoV-2 Vax 1 in K18-hACE2 mice, monkeys and Wistar rats. Two doses of vaccine were administered three weeks apart on Days 0 and 21. The administration of the vaccine to K18-hACE2 mice reduced viral loads in the lungs and brains of the vaccinated animals and protected the mice against challenge with SARS-CoV-2. In monkeys, the results of safety pharmacology tests, general clinical observations, and a core battery of studies of three vital systems, namely, the central nervous, cardiovascular, and respiratory systems, did not reveal any safety concerns. The toxicology study of the vaccine in rats showed no vaccine-related pathological changes, and all the animals remained healthy under the conditions of this study. Furthermore, the vaccine did not cause any abnormal toxicity in rats and was clinically tolerated even at the highest tested concentration. In addition, general health status, body temperature, local toxicity at the administration site, hematology, and blood chemistry parameters were also monitored. Overall, this work presents the results of the first systematic study of the safety profile of a plant-derived vaccine, Baiya SARS-CoV-2 Vax 1; this approach can be considered a viable strategy for the development of vaccines against COVID-19.  相似文献   

15.
《Vaccine》2021,39(17):2458-2466
Rapid development of vaccines for COVID-19 has relied on the application of existing vaccine technologies. This work examines the maturity of ten technologies employed in candidate vaccines (as of July 2020) and NIH funding for published research on these technologies from 2000–2019. These technologies vary from established platforms, which have been used successfully in approved products, to emerging technologies with no prior clinical validation. A robust body of published research on vaccine technologies was supported by 16,358 fiscal years of NIH funding totaling $17.2 billion from 2000–2019. During this period, NIH funding for published vaccine research against specific pandemic threats such as coronavirus, Zika, Ebola, and dengue was not sustained. NIH funding contributed substantially to the advance of technologies available for rapid development of COVID-19 vaccines, suggesting the importance of sustained public sector funding for foundational technologies in the rapid response to emerging public health threats.  相似文献   

16.
《Vaccine》2019,37(26):3388-3399
The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model’s true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.  相似文献   

17.
《Vaccine》2022,40(9):1208-1212
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in catastrophic damage worldwide. Accordingly, the development of powerful, safe, easily accessible vaccines with long-term effectiveness is understood as an urgently needed countermeasure against this ongoing pandemic. Guided by this strong promise of using AAVs, we here designed, optimized, and developed an AAV-based vaccines (including AAV-RBD(max), AAV-RBD(wt), AAV-2xRBD, and AAV-3xRBD) that elicit strong immune responses against the RBD domain of the SARS-CoV-2 S protein. These immunogenic responses have proven long-lived, with near peak levels for at least six months in mice. Notably, the sera immunized with AAV-3xRBD vaccine contains powerful neutralizing antibodies against the SARS-CoV-2 pseudovirus. Further evidence proven that potent specific antibodies could also be elicited in canines after vaccination with AAV-3xRBD vaccine.  相似文献   

18.
《Vaccine》2023,41(7):1295-1298
As COVID-19 vaccines moved from the controlled environment of clinical trials to use in real-world settings, it has been important to evaluate vaccine effectiveness. A retrospective cohort study was designed to identify cases of SARS-CoV-2 infection that occurred between January 17-June 30, 2021 in fully vaccinated Virginia residents. Of the fully vaccinated population of Virginia at the end of the study period (N = 4,271,505), 2445 (0.057 %) were reported to have experienced a vaccine breakthrough infection. Of those, 183 (7.5 %) were reported to have been hospitalized for COVID-19 and 53 (2.2 %) died from COVID-19. There were significant differences in vaccine effectiveness over time between both mRNA vaccines and the Janssen vaccine. Increasing age, pre-existing medical conditions, and male sex were associated with severe outcomes (hospitalization or death). Persons at greater risk for severe outcomes should continue to take precautions to prevent SARS-CoV-2 infection, even if fully vaccinated.  相似文献   

19.
Past, present and future of HIV vaccine trials in developing countries   总被引:3,自引:0,他引:3  
A safe, effective and accessible preventive vaccine is our best long-term hope for the control of the HIV/AIDS pandemic. The first phase I trial of an HIV vaccine was conducted in the US in 1987. Since then, >30 candidate vaccines have been tested in over 60 phase I/II clinical trials, involving >8000 healthy human volunteers. The majority of these trials have been conducted in the US and Europe, however, trials have also been conducted in developing countries (Brazil, China, Cuba, Haiti, Kenya, Thailand, and Uganda), including an ongoing phase III efficacy trial of a rgp120 candidate vaccine in Thailand. The effort to develop and evaluate HIV vaccines must increase, especially in Africa.  相似文献   

20.
《Vaccine》2023,41(32):4743-4751
Targeting the site of infection is a promising strategy for improving vaccine effectivity. To date, licensed COVID-19 vaccines have been administered intramuscularly despite the fact that SARS-CoV-2 is a respiratory virus. Here, we aim to induce local protective mucosal immune responses with an inhaled subunit vaccine candidate, ISR52, based on the SARS-CoV-2 Spike S1 protein. When tested in a lethal challenge hACE2 transgenic SARS-CoV-2 mouse model, intranasal and intratracheal administration of ISR52 provided superior protection against severe infection, compared to the subcutaneous injection of the vaccine. Interestingly for a protein-based vaccine, inhaled ISR52 elicited both CD4 and CD8 T-cell Spike-specific responses that were maintained for at least 6 months in wild-type mice. Induced IgG and IgA responses cross-reacting with several SARS- CoV-2 variants of concern were detected in the lung and in serum and protected animals displayed neutralizing antibodies. Based on our results, we are developing ISR52 as a dry powder formulation for inhalation, that does not require cold-chain distribution or the use of needle administration, for evaluation in a Phase I/II clinical trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号