首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have indicated that NK cells from different strains of inbred mice may express distinct Ly49 repertoires. Screening of NK cells from the CBA/J mouse for inhibitory and activating Ly49s revealed a novel DAP12-associated receptor that was immunoprecipitated with the Ly49G-specific mAb 4D11. Degenerate primers were designed to amplify and clone Ly49 cDNAs from CBA/J NK cells. A novel activating Ly49 cDNA was identified, which bears strong homology to the partially sequenced Ly49l gene found in C57BL/6 mice. Transfection of Ly49l into a DAP12+ cell line and subsequent immunoprecipitation experiments showed that Ly49L is likely the activating Ly49 detected by the 4DD11 antibody in CBA/J NK cells. Antibody-mediated cross-linking of Ly49L induced DAP12 phosphorylation, providing evidence that Ly49L is a functional activating receptor. Comparison of the extracellular domains of Ly49 family members indicates that all known activating members have an inhibitory counterpart with a highly related extracellular region.  相似文献   

2.
Natural killer (NK) cells survey potential targets using an array of receptors specific for major histocompatibility complex class I molecules. In mice, members of the Ly49 receptor gene family are expressed on overlapping subsets of NK cells and on CD1-restricted NK1 T cells. Here we characterize a population of memory cytotoxic (CD8(+)) T lymphocytes which also express inhibitory Ly49 family members. This cell population increases steadily with age; by 11 months, over one third of memory CD8(+) T cells express Ly49 molecules. These cells appear to express a normal TCR repertoire, and share several traits with previously activated T cells. Analysis of mutant mouse strains reveals that normal development of these cells depends upon the presence of the transporter associated with antigen presentation (TAP), classical class I molecules, and class II molecules. As a functional consequence of Ly49 expression, we demonstrate that T cell receptor-mediated activation of CD8(+) T cells is inhibited by Ly49 interactions with cognate class I molecules. We hypothesize that conventional memory CD8(+) T cells initiate Ly49 expression as a means of dampening an immune response and / or inhibiting T cell autoreactivity.  相似文献   

3.
Summary: A multigene family of immunoglobulin superfamily (Ig-SF) killer cell inhibitory receptors (KIRs) specifically recognize HLA class I molecules, while the interaction with H-2 products is mediated by members of the murine Ly49 C-type lectin family. A common structural feature of these receptors with inhibitory function is the presence of cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that couple them to SHP phosphatases. Strong support for the involvement of the CD94 C-type lectin receptor complex in NK cell-mediated recognition of Bw6+ HLA-B, HLA A and HLA-C alleles has been obtained. The cloned CD94 molecule covalently assembles with at least two different glyco-proteins (43 kDa and 39 kDa) to form functional receptors. NK cells inhibited upon HLA recognition express the CD94/p43 dimer, whose specificity for HLA molecules partially overlaps the Ig-SF receptor system. By contrast. NK clones bearing the homologous CD94/p39 receptor are triggered upon its ligation by CD94-specific mAbs. Remarkably, a set of Ig-SF receptors (p50) homologous to p58 KIRs also display an activating function. CD94-associated molecules belong to the NKG2 family of C-type lectins; the NKG2-A gene encodes for the p43 subunit. which contains cytoplasmic ITIMS. Expression of the different CD94 heterodimeric receptors will enable precise analysis of their putative interaction with HLA class I molecules.  相似文献   

4.
5.
In the mouse, two families of MHC class I-specific receptors, namely Ly49 and CD94/NKG2, have been identified on NK cells. Individual NK cells can express several Ly49 molecules as well as members of the CD94/NKG2 family. The expression of multiple receptors with different specificities for MHC class I is thus thought to generate NK cells with diverse recognition patterns. To delineate the mechanism by which NK cells begin to express different patterns of Ly49 and CD94/NKG2 molecules, we developed a clonal assay in which NK1.1(-), IL-2/ IL-15 receptor beta+ NK precursors generated by culture of multipotential Lin(-), c-kit+ progenitors in IL-7, stem cell factor and flt3 ligand are induced to differentiate into NK1.1+ , Ly49+ NK cells. Examination of the clonal populations thus generated revealed heterogeneity in the pattern of Ly49 and CD94/NKG2 gene expression. In addition, a distinct kinetic pattern of expression was observed. CD94, NKG2A, NKG2C and Ly49B were expressed first followed by Ly49G, then Ly49C and I and finally, Ly49A, D, E and F. The data suggest a stochastic but ordered acquisition of class I receptors on NK cells in which developing NK cells become capable of expressing distinct receptors at different times but show no absolute prerequisite to express the receptors that are acquired early in NK development for the expression of those that are acquired later.  相似文献   

6.
The ability of several Ly49 family members to inhibit natural killer (NK) cell functions through recruitment of SHP-1 phosphatase has been reported. In contrast, the mechanisms underlying the activating signal generated by Ly49D are poorly understood. A homodimeric phosphoprotein (pp16) that physically and functionally associates with Ly49D has been described. In this study, a rabbit anti-mouse pp16 antiserum was generated and used to demonstrate that pp16 corresponds to the recently described DAP12 molecule. In addition, we show that a second Ly49 family member that lacks an immunoreceptor tyrosine-based inhibitory motif and contains a charged residue in the transmembrane domain, Ly49H, also associates with DAP12. Furthermore, we show that engagement of the Ly49H/DAP12 complex results in phosphorylation of DAP12, intracellular calcium mobilization, and tumor necrosis factor secretion in transfected cells. These results thus provide evidence that Ly49H is an activating receptor that associates with DAP12, previously described as a pp16 component of the Ly49D receptor complex.  相似文献   

7.
Natural killer (NK) T lymphocytes are thought to act as regulatory cells directing early events during immune responses. Murine NKT cells express inhibitory receptors of the Ly49 family. These receptors have a well-established and crucial role in modulating NK cell activities, but their physiological role in regulating NKT cells is not well understood, nor is the influence of major histocompatibility (MHC) ligands on endogenous Ly49 expression. We have further investigated how the expression of inhibitory NK receptors is regulated on NKT cells, and demonstrate a non-random expression of ligated Ly49 molecules on CD1d-restricted NKT cells. The nature of the T-cell receptor on the NKT cell crucially determines the profile of expressed Ly49 isoforms. Further, we show that MHC class I ligands efficiently modulate the expression levels of the inhibitory receptors, and the frequencies of cells positive for the Ly49 members. In addition, we find a several-fold increase in Ly49C/I-expressing NKT cells in adult thymus, apparently independent of MHC class I molecules. Abundant expression of Ly49 receptors on NKT cells, and the striking differences found in Ly49 isoform patterns on NKT-cell subsets differing in T-cell receptor expression, suggest that the pattern of Ly49 expression is tuned to fit the T-cell receptor and to emphasize further a role for these receptors in NKT immunity.  相似文献   

8.
Ly49 receptors in rodents, like KIRs in humans, regulate NK cell activity. Although inhibitory Ly49 receptors clearly recognize MHC-I molecules, ligands for the activating Ly49 receptors are less well defined. Here, we show that the activating Ly49s4 and the inhibitory Ly49i4 receptors recognize nonclassical MHC-I molecules on the rat macrophage cell line R2 (RT1(d)). Listeria infection of R2 macrophages led to increased expression of classical and nonclassical MHC-I molecules. Coincubation of these infected cells with reporter cells expressing Ly49i4 or Ly49s4 increased the reporter cell responses. These responses were blocked by mAb OX18 (anti-MHC-I) and AAS1 (anti-nonclassical MHC-I). IFN-γ treatment of normal R2 cells also increased the MHC-I expression and enhanced the reporter cell responses. These results suggest that activating and inhibitory Ly49 receptors monitor MHC-I expression on Listeria-infected cells.  相似文献   

9.
Natural killer cells play a major role in innate immunity against tumor and virus-infected cells. NK cells express activating and inhibitory receptors to regulate their function. It has been established that modulation in the NK cell receptor profile results in altered function of NK cell against target cells. Here, we study the effect of IL-2 stimulation on NK cell inhibitory receptors Ly49A, Ly49C, and activating receptor Ly49D in C57BL/6 mice. It was observed that there was significant increase in expression of Ly49A but no change in expression of Ly49C and Ly49D on IL-2 stimulation. We further noticed that although IL-2 stimulation increased the NK cell population and expression of activation marker NK1.1 but IL-2 stimulation does not cause hyper-responsiveness in NK cells, as there was no increase in MIP-1α and IFN-γ production in IL-2 stimulated NK cells as compared to unstimulated controls. These findings provide a framework to understand the effect of IL-2 stimulation on cognate and non-cognate receptor ligand interactions and suggest stratagies for immunotherapies in conjunction with IL-2 combinatorial therapies.  相似文献   

10.
Natural killer (NK) cells are an essential component of the innate immunity toward tumors and virally infected cells. The function of NK cells is regulated by a precise balance between inhibitory and activating signals. These signals are mediated by NK cell receptors that bind either classical MHC class I molecules or their structural relatives such as MICA, ULBP, RAE-1, and H-60. Two separate families of NK cell receptors have been identified: the immunoglobulin-like family (KIR, LIR) and C-type lectin-like family (Ly49, NKG2D, and CD94/NKG2). Here we summarize the structure of Ly49 C-type lectin-like proteins hitherto solved (Ly49A, Ly49C and Ly49I) and their interaction with MHC class I molecules as determined by the co-crystal structure of Ly49A/H-2Dd and Ly49C/H-2Kb.  相似文献   

11.
We have exploited strain-specific differences in the NK allorecognition repertoires to generate rat monoclonal antibodies against receptors involved in the control of allogeneic responses by rat NK cells. The monoclonal antibody STOK2 binds to a homodimeric glycoprotein that has been implicated as an inhibitory receptor for an MHC molecule in the PVG strain. In the present study, we haveidentified this glycoprotein as a novel rat Ly49 receptor (Ly49i2) containing an immunoreceptor tyrosine-based inhibitory motif. Ligation of the Ly49i2 receptor induces inhibitory signals, and Ly49i2 coprecipitates with the inhibitory tyrosine phosphatase SHP-1 in stably transfected RNK-16 cells. Moreover, it inhibits natural killing of lymphoblast targets and transfected fibroblast targets expressingthe classical MHC class Ia allele RT1-A1(c). Ly49i2, therefore, is an inhibitory receptor for specific MHC class Ia molecules, similar to inhibitory members of the mouse Ly49 family.  相似文献   

12.
Expression of adenovirus E1A gene products in tumor cells enhances NK cell lysis in vitro and NK-mediated rejection in vivo, despite increasing class I molecules on tumor cells. It is unclear why the increased expression of MHC class I molecules does not appear to confer resistance to killing by NK cells. One possibility is the unique capacity of E1A to sensitize cells to multiple NK cell killing mechanisms including perforin/granzyme, Fas ligand, tumor necrosis factor-alpha and TRAIL. To examine this issue, MCA-102-E1A tumor cells (H-2(b)) that express E1A and are NK sensitive were transfected with H-2D(d), the ligand for the NK inhibitory receptor, Ly49A. Expression of H-2D(d) molecules by MCA-102-E1A cells protected them from lysis by a Ly49A(+) NK cell clone and Ly49A(+) NK cells isolated from C57BL/6 nude mice. In contrast, NK cell-mediated rejection of MCA-102-E1A tumor cells was not inhibited by the expression of H-2D(d) molecules, nor was killing by polyclonal populations of NK cells isolated from C57BL/6-nude mice. H-2D(d) interacts with several inhibitory Ly49 receptors that are non-clonally expressed on NK cells in C57BL/6 mice: Ly49A (20% of NK cells), Ly49G2 (54% of NK cells) and Ly49C/I (47% of NK cells). Our data indicate that while E1A sensitizes cells to NK cell killing, it does not interfere with signal transduction by inhibitory NK receptors. Therefore, a small population of NK cells that do not express Ly49A, Ly49G2 or Ly49C/I inhibitory receptors are likely responsible for the rejection of MCA-102-E1A-D(d) tumor cells in vivo.  相似文献   

13.
Murine bone marrow (BM) cell preparations lack mature cytotoxic natural killer (NK) cells, but NK cells may be induced in these cell preparations by culturing with interleukin-2 (IL2). Present study was aimed at studying the role of interactions between Ly49 molecules and major histocompatibility complex (MHC) class I molecules during IL2-induced development of mature NK cells in BM cell cultures. Addition of monoclonal antibodies (mabs) specific to class I MHC molecules of H-2b haplotype, to block any interaction of MHC I molecules with their receptors, was found to inhibit NK cell development. Mouse NK cells express several types of Ly49 molecules including Ly49C, which is an inhibitory receptor specific to MHC I molecules of H-2b haplotype. Blocking Ly49-MHC I interaction by using anti-Ly49C mab inhibited the development of cytotoxic NK cells. Addition of anti-Ly49A (no specificity for H-2b MHC I molecules) or anti-Ly49D (activating receptor specific for MHC I molecules of many H-2 haplotypes including H-2b) mabs, however, had no effect on IL2-induced NK cell development in BM cells. Mabs specific to Ly49C molecule and MHC I molecules of H-2b haplotype inhibited the development of mature NK cells from highly purified NK precursor cell population. These results indicate that specific interaction between inhibitory self-reactive Ly49 molecules and MHC I molecules may be crucial for NK cell development. We propose a model in which Ly49-MHC I interaction may have a permissive role in allowing development of only such NK cell clones that expresses at least one self-reactive inhibitory Ly49 molecule so that lysis of autologous healthy cells by mature NK cells may be avoided.  相似文献   

14.
Inhibitory natural killer (NK) cell receptors specific for major histocompatibility complex class I (MHC-I) molecules include Ly49 receptors in mice and killer immunoglobulin-like receptors (KIR) in humans. The “licensing” or “arming” models imply that engagement of these receptors to self MHC-I molecules during NK cell development educates NK cells to be more responsive to cancer and viral infection. We recently reported that hematopoietic stem cell transplantation (HSCT) induced rapid and preferential expansion of functionally competent Ly49G+, but not other Ly49 family, NK cells independent of NK cell licensing via Ly49–MHC-I interactions. We now extend these studies to evaluate expression of the two Ly49G receptor isoforms Ly49GB6 and Ly49GBALB, using mice with different MHC-I haplotypes that express one or both of the isoforms. NK cells from CB6F1 (H-2bxd) hybrid mice express two different alleles for Ly49G receptor, Ly49GB6 and Ly49GBALB. We found that CB6F1 mice had more Ly49GB6+ NK cells than Ly49BALB+ NK cells, and that only Ly49GB6+ NK cells increased in relative numbers and in Ly49G mean fluorescence intensity values after HSCT similar to the B6 parental strain. We further observed that Ly49G+ NK cells in BALB/c (H-2d) and BALB.B (H-2b) mice, which have the same background genes, recover slowly after HSCT, in contrast to Ly49G+ NK cells in B6 (H-2b) recipients. The difference in expression of Ly49GB6 relative to Ly49GBALB was linked to differences in the activity of the Pro1 promoter between the two alleles. Thus, we conclude that the Ly49GB6 receptor dominates Ly49G expression on NK cells after HSCT in strains in which that allele is expressed. The data suggest that Ly49 allelic polymorphism within a particular Ly49 family member can differentially affect NK cell recovery after HSCT depending on the background genes of the recipient, not on the MHC-I haplotype.  相似文献   

15.
NK cells use NKG2D receptor to recognize 'induced-self'. In apparent violation of the 'missing-self' hypothesis, NK cells stimulated through NKG2D can lyse target cells despite normal expression levels of MHC class I molecules. Although, 'overriding' of the inhibitory by the activating signals had been postulated the precise role of inhibitory Ly49 receptors on NKG2D-mediated activation has only started emerging. We propose that NKG2D-mediated activation is a function of 'altering the balance' in the signaling strength between the activating NKG2D and inhibiting Ly49 receptors. Balance in the signaling strength depends on the expression levels of activating ligands on the target cells. Qualitative and quantitative variations of MHC class I molecules expressed on the target cells also plays a major role in determining this 'altered-balance'. Consequently, the nature of Ly49 receptors expressed on specific NK subsets determines the level of NKG2D-mediated NK cell activation. These observations provide a firm basis of 'altered-balance' in NK signaling and describe an active interplay between inhibitory Ly49 and activating NKG2D receptors.  相似文献   

16.
When T effector cells meet antigen-bearing target cells, there is a specific accumulation of T-cell receptors, co-receptors and structural proteins at the point of cell-cell contact. Ly49 inhibitory receptors bind to murine major histocompatibility complex (MHC) class I molecules and prevent natural killer-(NK) cell cytotoxicity. In this study we have tested whether inhibitory receptors accumulate at the point of cell-cell contact when NK cells encounter target cells bearing MHC class I ligands for those inhibitory receptors. We have used RNK-16 effector cells that express Ly49A receptors and have found that there was a specific accumulation of Ly49A receptors at the point of NK cell-target cell contact when the target cells expressed H-2Dd. We also observed that engagement of Ly49A on NK cells resulted in an altered redistribution of potential triggering receptors CD2 and NKR-P1. These data indicate that inhibitory receptors, like activating receptors, may specifically aggregate at the point of cell-cell contact which may be necessary for them to mediate their full inhibitory effect.  相似文献   

17.
NK cell function is regulated by a dual receptor system, which integrates signals from triggering receptors and MHC class I-specific inhibitory receptors. We show here that the src family kinase Fyn is required for efficient, NK cell-mediated lysis of target cells, which lack both self-MHC class I molecules and ligands for NKG2D, an activating NK cell receptor. In contrast, NK cell inhibition by the MHC class I-specific receptor Ly49A was independent of Fyn, suggesting that Fyn is specifically required for NK cell activation via non-MHC receptor(s). Compared to wild type, significantly fewer Fyn-deficient NK cells expressed the inhibitory Ly49A receptor. The presence of a transgenic Ly49A receptor together with its H-2(d) ligand strongly reduced the usage of endogenous Ly49 receptors in Fyn-deficient mice. These data suggest a model in which the repertoire of inhibitory Ly49 receptors is formed under the influenced of Fyn-dependent NK cell activation as well as the respective MHC class I environment. NK cells may acquire Ly49 receptors until they generate sufficient inhibitory signals to balance their activation levels. Such a process would ensure the induction of NK cell self-tolerance.  相似文献   

18.
Natural killer (NK) cell responsiveness in the mouse is determined in an education process guided by inhibitory Ly49 and NKG2A receptors binding to MHC class I molecules. It has been proposed that inhibitory signalling in human NK cells involves Abl‐1 (c‐Abl)‐mediated phosphorylation of Crk, lowering NK cell function via disruption of a signalling complex including C3G and c‐Cbl, suggesting that NK cell education might involve c‐Abl. Mice deficient in c‐Abl expression specifically in murine NK cells displayed normal inhibitory and activating receptor repertoires. Furthermore, c‐Abl‐deficient NK cells fluxed Ca2+ normally after triggering of ITAM receptors, killed YAC‐1 tumour cells efficiently and showed normal, or even slightly elevated, capacity to produce IFN‐γ after activating receptor stimulation. Consistent with these results, c‐Abl deficiency in NK cells did not affect NK cell inhibition via the receptors Ly49G2, Ly49A and NKG2A. We conclude that signalling downstream of murine inhibitory receptors does not involve c‐Abl and that c‐Abl plays no major role in NK cell education in the mouse.  相似文献   

19.
Murine natural killer (NK) cell subsets, as defined by expression of members of the Ly49 gene family, discriminate target cells expressing different major histocompatibility complex (MHC) class I alleles. For example, Ly49A+ NK cells lyse H-2b but not H-2d tumor target cells. The specificity arises because Dd on target cells binds to Ly49A, transducing an inhibitory signal into the Ly49A+ NK cells. The capacity of NK cells to discriminate allelic class I determinants raises a key issue: are NK cells self-tolerant, and if so what are the mechanisms that lead to self-tolerance? As previously reported, potentially autoaggressive Ly49A+ NK cells are not clonally deleted in H-2b mice. However, IL-2- cultured Ly49A+ effector cells from H-2b mice exhibit reduced lysis of H-2b (self) concanavalin A blast target cells, compared to Ly49A+ effector cells from H-2d mice. Possible mechanisms accounting for this self-tolerance are addressed in this report. Self-tolerance was not due to anergy of the cells, because the Ly49A+ effector cells from both types of mice lysed β2-microglobulin-deficient target cells efficiently and equivalently. These results also suggest that tolerance results from inhibition mediated by β2m-dependent H-2b class I molecules. Significantly, blockade of Ly49A on Ly49A+ effector cells from H-2b mice did not restore lysis of H-2b target cells, suggesting that inhibition is not mediated through the Ly49A receptor. Additional experiments suggest that inhibition is also not mediated primarily through the Ly49C receptor. These results suggest that Ly49A+ effector cells from H-2b mice, unlike those from H-2d mice, express inhibitory receptors specific for H-2b molecules that are distinct from Ly49A and Ly49C.  相似文献   

20.
Summary: Natural killer cells in the mouse express class 1 MHC-specific inhibitory receptors of the Ly49 protein family. The receptors mediate inhibition of the lysis of tumor cells and normal cells, and mediate the specificity of bone-marrow graft rejection by NK cells in vivo. The function of these receptors may be to confer upon NK cells the capacity to distinguish normal self cells from cells that have down-regulated expression of some or all self-class I molecules, Ly49 receptors discriminate between different class I molecules, and are distributed in expression to overlapping subsets of NK cells. The receptors appear to interact with class I-MHC residues and associated N-glycans, with little or no discrimination of the class I- bound peptide. The Ly49 receptor repertoire may be initially generated by a stochastic process that distributes receptors randomly to I different cells and treats the two alleles of a given Ly49 gene independently. However, class I-MHC-dependent "education" processes shape the functional repertoire. The education processes silence potentially auto-aggressive NK cells, probably by ensuring that each NK cell expresses at least one self-specific Ly49 receptor. In addition, NK cell clones that express multiple self-specific Ly49 receptors are disfavored by the education processes, perhaps to confer greater discrimination on to individual NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号