首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
The maintenance of a benign chronic Toxoplasma gondii infection is mainly dependent on the persistent presence of gamma interferon (IFN-gamma) in the central nervous system (CNS). However, IFN-gamma-activated microglia are paradoxically involved in parasitism control and in tissue damage during a broad range of CNS pathologies. In this way, nitric oxide (NO), the main toxic metabolite produced by IFN-gamma-activated microglia, may cause neuronal injury during T. gondii infection. Despite the potential NO toxicity, neurodegeneration is not a common finding during chronic T. gondii infection. In this work, we describe a significant down-modulation of NO production by IFN-gamma-activated microglia in the presence of conditioned medium of T. gondii-infected astrocytes (CMi). The inhibition of NO production was paralleled with recovery of neurite outgrowth when neurons were cocultured with IFN-gamma-activated microglia in the presence of CMi. Moreover, the modulation of NO secretion and the neuroprotective effect were shown to be dependent on prostaglandin E(2) (PGE(2)) production by T. gondii-infected astrocytes and autocrine secretion of interleukin-10 (IL-10) by microglia. These events were partially eliminated when infected astrocytes were treated with aspirin and cocultures were treated with anti-IL-10 neutralizing antibodies and RP-8-Br cyclic AMP (cAMP), a protein kinase A inhibitor. Further, the modulatory effects of CMi were mimicked by the presence of exogenous PGE(2) and by forskolin, an adenylate cyclase activator. Altogether, these data point to a T. gondii-triggered regulatory mechanism involving PGE(2) secretion by astrocytes and cAMP-dependent IL-10 secretion by microglia. This may reduce host tissue inflammation, thus avoiding neuron damage during an established Th1 protective immune response.  相似文献   

2.
3.
Hein A  Martin JP  Koehren F  Bingen A  Dörries R 《Virology》2000,268(2):420-429
Infection of microglial cells by the human immunodeficiency virus (HIV) is supposed to play an important role in the pathogenesis of AIDS-related central nervous system (CNS) complications. So far, however, experimental data about interactions between HIV and ramified microglia from the adult CNS were only occasionally reported, making it difficult to understand the exact nature of pathogenic events contributing to HIV-encephalopathy. Therefore, we used the animal model of feline immunodeficiency virus (FIV) infection of domestic cats to establish an experimental system which is suitable for studying the relationships between an immunodeficiency virus and the mature ramified microglia of the central nervous system. By means of density gradient centrifugation approximately 95% pure microglial cells could be isolated from adult feline brain that were characterized by their CD45(low) phenotype. Resident microglia extracted from the CNS of experimentally infected cats harbored FIV-specific DNA and cocultivation with mitogen-activated, but uninfected peripheral blood mononuclear cells (PBMC) resulted in recovery of high-titered infectious virus. Double labeling of brain cell monocultures explanted from persistently infected animals for both microglia and FIV markers disclosed less than 1% of viral antigen expressing microglial cells. This suggests that during the subclinical phase of the infection only a small number of brain-resident macrophages are productively infected. However, interaction of FIV-infected microglia and inflammatory lymphocytes may promote viral replication, thus supporting viral spread in brain tissue.  相似文献   

4.
Chromogranin A (CgA) is associated with microglial activation cascades implicated in neurodegeneration in Alzheimer's, Pick's and Parkinson's diseases. In primary rat microglia, CgA-mediated inducible nitric oxide (iNOS) expression, nitric oxide (NO) production, mitochondrial depolarisation and apoptosis were inhibited by PP2 (Src kinase inhibitor). CgA-mediated iNOS expression and NO production were also inhibited by U0126 (MEK inhibitor), but mitochondrial depolarisation and apoptosis were not. PP2 inhibited ERK phosphorylation; therefore, Src mediates CgA-induced ERK phosphorylation leading to iNOS expression and NO production. Glutamate release induced by CgA was independent of both pathways. These findings provide insights into the way microglia are activated by CgA and the microglial signalling mechanisms associated with neurological disorders such as Alzheimer's disease.  相似文献   

5.
Toxoplasmic encephalitis (TE) is a life-threatening disease of immunocompromised individuals and has increased in prevalence as a consequence of AIDS. TE has been modeled in inbred mice, with CBA/Ca mice being susceptible and BALB/c mice resistant to the development of TE. To better understand the innate mechanisms in the brain that play a role in resistance to TE, nitric oxide (NO)-dependent and NO-independent mechanisms were examined in microglia from BALB/c and CBA/Ca mice and correlated with the ability of these cells to inhibit Toxoplasma gondii replication. These parameters were measured 48 h after stimulation with lipopolysaccharide (LPS) gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), or combinations of these inducers in T. gondii-infected microglia isolated from newborn mice. CBA/Ca microglia consistently produced less NO than did BALB/c microglia after stimulation with LPS or with IFN-gamma plus TNF-alpha, and they inhibited T. gondii replication significantly less than did BALB/c microglia. Cells of both strains treated with IFN-gamma alone significantly inhibited uracil incorporation by T. gondii, and N(G)-monomethyl-L-arginine (NMMA) treatment did not reverse this effect. In cells treated with IFN-gamma in combination with other inducers, NMMA treatment resulted in only partial recovery of T. gondii replication. This IFN-gamma-dependent inhibition of replication was not due to generation of reactive oxygen species or to increased tryptophan degradation. These data suggest that NO production and an IFN-gamma-dependent mechanism contribute to the inhibition of T. gondii replication after in vitro stimulation with IFN-gamma plus TNF-alpha or with LPS. Differences in NO production but not in IFN-gamma-dependent inhibition of T. gondii replication were observed between CBA/Ca and BALB/c microglia.  相似文献   

6.
Toxoplasma gondii is an important pathogen in the central nervous system, causing a severe and often fatal encephalitis in patients with AIDS. Gamma interferon (IFN-gamma) is the main cytokine preventing reactivation of Toxoplasma encephalitis in the brain. Microglia are important IFN-gamma-activated effector cells controlling the growth of T. gondii in the brain via a nitric oxide (NO)-mediated mechanism. IFN-gamma can also activate astrocytes to inhibit the growth of T. gondii. Previous studies found that the mechanism in murine astrocytes is independent of NO and all other known anti-Toxoplasma mechanisms. In this study we investigated the role of IGTP, a recently identified IFN-gamma-regulated gene, in IFN-gamma inhibition of T. gondii in murine astrocytes. Primary astrocytes were cultivated from IGTP-deficient mice, treated with IFN-gamma, and then tested for anti-Toxoplasma activity. In wild-type astrocytes T. gondii growth was significantly inhibited by IFN-gamma, whereas in astrocytes from IGTP-deficient mice IFN-gamma did not cause a significant inhibition of growth. Immunoblot analysis confirmed that IFN-gamma induced significant levels of IGTP in wild-type murine astrocytes within 24 h. These results indicate that IGTP plays a central role in the IFN-gamma-induced inhibition of T. gondii in murine astrocytes.  相似文献   

7.
Microglia, the resident macrophage population of the central nervous system, is rapidly activated in murine Toxoplasma encephalitis (TE). However, the precise contribution of microglia to intracerebral immune reactions and the in vivo regulation of microglial activity are still poorly understood. To selectively analyse microglial reactions in TE, we have established a model of radiation-induced CD45-congenic bone marrow chimeras between CD45.2+ C57BL/6 (recipient) and CD45.1+ B6.SJL (donor) mice. These chimeras allow a differentiation of radioresistant CD45.2+ microglia from all other leukocytes, which exhibit the CD45.1+ haplotype. In the normal brain, microglia produced tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-10, and IL-15 mRNA. In TE, marked microglial activation was observed with a de novo expression of IL-12p40 and inducible nitric oxide synthase mRNA, upregulation of IL-1beta and TNF-alpha mRNA, a continuous production of IL-10, and IL-15 mRNA, an induction of major histocompatibility class I and II antigens, intercellular adhesion molecule-1, and leukocyte function-associated antigen-1. Furthermore, selective depletion of CD4+ and/or CD8+ T cells in the chimeras revealed that microglial cytokine production was critically regulated by CD8+T cells, whereas expression of cell surface molecules was less dependent on T cells. These findings demonstrate a specific regulation of microglia by T lymphocytes during the course of TE.  相似文献   

8.
目的 观察尼古丁对脂多糖(LPS)诱导的小胶质细胞激活及活化后细胞死亡的影响. 方法 建立慢性尼古丁暴露的小鼠动物模型,腹腔注射LPS诱导小胶质细胞激活,应用免疫组织化学方法 观察皮质、海马、黑质CD-11b阳性小胶质细胞表达的变化;BV2细胞(小鼠小胶质瘤细胞系)传代培养,运用CCK-8试剂盒检测细胞活性,一氧化氮检测试剂盒检测一氧化氮(NO)释放情况,RT-PCR分析诱导型一氧化氮合酶(iNOS)、肿瘤坏死因子(TNF-α)、白细胞介素1(IL-1β)、白细胞介素6(IL-6)、环氧化酶-2(COX-2)、干扰素调节因子1(IRF-1)、Caspase-11 mRNA的表达,免疫印迹法分析P-I-κB、Caspase-3的表达变化. 结果 尼古丁抑制LPS诱导的皮质、海马、黑质CD-11b阳性小胶质细胞的表达;尼古丁抑制LPS刺激引起的BV2细胞的死亡,NO的释放,iNOS、TNF-α、IL-1β、IL-6、COX-2、IRF-1、Caspase-11 mRNA的表达,P-I-κB、Caspase-3蛋白的表达. 结论 尼古丁可以抑制LPS诱导的小胶质细胞活化及激活诱导的细胞死亡(AICD),对脑内炎症反应具有神经保护作用.  相似文献   

9.
Amphetamine (AMPH) derivatives are the most commonly abused drugs. Chronic or intermittent AMPH abuse may create temporary or permanent disturbances in the dopaminergic system of the brain that may predispose individuals to Parkinsonism. AMPH induces a massive release of dopamine from synaptic vesicles and then generates reactive oxygen species (ROS). Furthermore, nitric oxide (NO), produced in the central nervous system (CNS) mediated by the activation of microglia, appears to play a critical role in stress-induced brain damage. In the present study, we examined the involvement of NO in the neurotoxic effects of AMPH, to investigate the hypothesis that altered nitric oxide synthase (NOS) function was involved. AMPH at a concentration of 0.4-3.2mM has a cytotoxic effect on highly aggressively proliferating immortalized (HAPI) cells, a rat microglial cell line. The effect of AMPH on increasing inducible NOS (iNOS) mRNA in HAPI microglial cells is concentration-dependent. Pretreatment with either S-methylisothiourea (S-MT), a selective iNOS inhibitor, or melatonin, a major secretory product of pineal gland, counteracted the over expression of iNOS induced by AMPH in a concentration-dependent manner. The induction of iNOS by AMPH in microglial cells could be an important source of NO in CNS inflammatory disorders associated with the death of neurons and oligodendrocytes. Administration of exogenous melatonin will be beneficial, as it reduces iNOS mRNA expression, and may, therefore, be able to be used as a neuroprotective agent in toxicity induced by AMPH or other immunogens.  相似文献   

10.
Microglial activation has been implicated as one of the causative factors for neuroinflammation in various neurodegenerative diseases. The sphingolipid metabolic pathway plays an important role in inflammation, cell proliferation, survival, chemotaxis, and immunity in peripheral macrophages. In this study, we demonstrate that sphingosine kinase1 (SphK1), a key enzyme of the sphingolipid metabolic pathway, and its receptors are expressed in the mouse BV2 microglial cells and SphK1 alters the expression and production of proinflammatory cytokines and nitric oxide in microglia treated with lipopolysaccharide (LPS). LPS treatment increased the SphK1 mRNA and protein expression in microglia as revealed by the RT–PCR, Western blot and immunofluorescence. Suppression of SphK1 by its inhibitor, N, N Dimethylsphingosine (DMS), or siRNA resulted in decreased mRNA expression of TNF-α, IL-1β, and iNOS and release of TNF-α and nitric oxide (NO) in LPS-activated microglia. Moreover, addition of sphingosine 1 phosphate (S1P), a breakdown product of sphingolipid metabolism, increased the expression levels of TNF-α, IL-1β and iNOS and production of TNF-α and NO in activated microglia. Hence to summarize, suppression of SphK1 in activated microglia inhibits the production of proinflammatory cytokines and NO and the addition of exogenous S1P to activated microglia enhances their inflammatory responses. Since the chronic proinflammatory cytokine production by microglia has been implicated in neuroinflammation, modulation of SphK1 and S1P in microglia could be looked upon as a future potential therapeutic method in the control of neuroinflammation in neurodegenerative diseases.  相似文献   

11.
Stage conversion between tachyzoites and bradyzoites of Toxoplasma gondii was investigated in vitro by using murine bone marrow-derived macrophages (BMMs) as host cells. Following infection of untreated BMMs with tachyzoites, spontaneous expression of bradyzoite-specific antigens (Bsa) occurred at low frequency with Toxoplasma strain-dependent ratios from 0.03 to 2%. As previously described for peritoneal macrophages, activation of tachyzoite-infected BMMs with gamma interferon (IFN-gamma) or lipopolysaccharide resulted in the induction of Bsa. When bradyzoites were used for infection, prolonged expression of Bsa could be observed in IFN-gamma-activated BMMs. The induction of Bsa expression seemed to be closely linked to parasite multiplication and increased to maximal values of 50 to 70% in intermediately activated macrophages with nitric oxide (NO) levels that allowed reduced parasite replication. Identical results in stage conversion were obtained when sodium nitroprusside was used as a source of exogenous NO, indicating that NO might be a molecular trigger of stage conversion. NO is reactive with iron-sulfur centers in proteins, thereby inhibiting proteins involved in the mitochondrial respiratory chain. Using oligomycin and antimycin A as inhibitors of mitochondrial function, growth inhibition of parasites and induction of Bsa were obtained. Since microglia are the functional correlates of macrophages in the central nervous system and inhibit T. gondii upon activation with IFN-gamma, a similar mechanism might be involved during cyst development in the brain.  相似文献   

12.
Productive infection of human fetal microglia by HIV-1.   总被引:6,自引:0,他引:6       下载免费PDF全文
Central nervous system disease is a frequent finding in both pediatric and adult AIDS. Microglia have been shown to be the major target of HIV-1 infection in the central nervous system. However, studies in vitro concerning susceptibility of human microglia to HIV-1 infection reported conflicting results; microglia from adult brain showed productive infection by HIV-1, whereas microglia from fetal brain did not. To investigate this further and to define the possible mechanisms responsible for this difference, we prepared highly purified human microglial cell cultures from fetuses of 16 to 24 weeks' gestation and exposed them to monocytotropic (HIV-1 JR-FL and HIV-1 JR-CSF) isolates of HIV-1. Culture supernatants were examined for the presence of p24 antigen for a 4-week period after viral exposure. Concurrently, potential cytopathic effects and cellular viral antigen expression (gp41 and p24) were examined by light microscopy in combination with immunocytochemistry. The results showed that human fetal microglia can be productively infected by HIV-1 as judged by p24 antigen capture assay, syncytia formation, and gp41 and p24 immunoreactivity of infected microglia. In addition, by electron microscopy, numerous viral particles characteristic of HIV-1 were present both in the intracellular and extracellular compartments. Uninfected cultures or astrocytes overgrown in the microglial cultures did not show evidence of infection under identical experimental conditions. These data demonstrate that human fetal microglia, like their adult counterparts, are susceptible to HIV-1 infection in vitro and can support the production of virus.  相似文献   

13.
14.
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.  相似文献   

15.
Cytokines are produced in the central nervous system (CNS) and exhibit various effects on neurons, microglia, and astrocytes. Astrocytes can release chemical transmitters, including glutamate, in a calcium-dependent manner, which may mediate communication between neurons and astrocytes. To date, no studies have been conducted on the effects of cytokines on calcium-dependent glutamate release from astrocytes. Here, we studied the effects of cytokines on calcium-dependent glutamate release. Cytokines enhanced glutamate release and induced the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO). The inhibition of iNOS eliminated the cytokine-induced enhancement of glutamate release, and treatment with a NO donor, even in the absence of cytokines, increased glutamate release. Thus, cytokines enhance glutamate release, and this enhancement is mediated by NO.  相似文献   

16.
Cytokines are produced in the central nervous system (CNS) and exhibit various effects on neurons, microglia, and astrocytes. Astrocytes can release chemical transmitters, including glutamate, in a calcium-dependent manner, which may mediate communication between neurons and astrocytes. To date, no studies have been conducted on the effects of cytokines on calcium-dependent glutamate release from astrocytes. Here, we studied the effects of cytokines on calcium-dependent glutamate release. Cytokines enhanced glutamate release and induced the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO). The inhibition of iNOS eliminated the cytokine-induced enhancement of glutamate release, and treatment with a NO donor, even in the absence of cytokines, increased glutamate release. Thus, cytokines enhance glutamate release, and this enhancement is mediated by NO.  相似文献   

17.
H Kim  E Lee  T Shin  C Chung    N An 《Immunology》1998,95(3):389-394
The induction of the inducible nitric oxide synthase (iNOS) has been proposed to play a role in a variety of inflammatory diseases. Sodium salicylate (NaSal) is the most commonly used anti-inflammatory agent. We investigated whether NaSal can diminish the induction of iNOS in murine brain microglial cells. In primary cultures, interferon-gamma (IFN-gamma) or lipopolysaccharide (LPS) separately did not stimulate nitric oxide (NO) production, whereas IFN-gamma combined with LPS synergistically induced iNOS. NaSal inhibited both the production of NO and expression of iNOS in microglial cells. Synergy between IFN-gamma and LPS was mainly dependent on tumour necrosis factor-alpha (TNF-alpha) secretion as the increase of the induction of the iNOS by IFN-gamma plus LPS was associated with the increase of TNF-alpha secretion and IFN-gamma plus LPS-induced TNF-alpha secretion by microglial cells was decreased by the treatment with NaSal. These results suggest a possible use of NaSal in managing inflammation of the central nervous system through inhibition of the iNOS induction.  相似文献   

18.
Toxoplasma gondii (T. gondii), an opportunistic protozoan, is an important cause of central nervous system (CNS) infections in immunosuppressed patients. The present study focused on the interaction between T. gondii and microglial cells from the brain of neonatal Balb/c mice.

Preincubation of the murine microglial cells with recombinant interferon-gamma (rIFN-gM) and lipopolysaccharide (LPS) induced significant inhibition of T. gondii replication in a dose dependent manner. This antiparasitic effect in microglial cells was correlated with the induction of the L-arginine-dependent generation of reactive nitrogen intermediates (RNIs). Tumor necrosis factor-alpha (TNF-aL) was also involved in the toxoplasmastatic activity. Microglial cells incubated with recombinant TNF-aL in combination with a non-activating concentration of rIFN-gM released substantial amount of RNIs. Neutralizing antibodies against mouse TNF-aL inhibited the release of RNI by rIFN-gM activated macrophages.

In summary, the present results show that activation of microglial cells by rIFN-gM and LPS induce the production of nitric oxide (NO) by these cells via an L-arginine dependent pathway. NO appears to be the effector molecule mediating the toxoplasmastatic effects in these cells.  相似文献   

19.
This study investigated the effects of human chorionic gonadotropin (hCG) on the synthesis of nitric oxide (NO) in murine neonatal microglial cells. When hCG was used in combination with interferon-gamma (IFN-gamma), there was a marked cooperative induction of NO synthesis in a dose-dependent manner. This increase in NO synthesis was reflected as an increased amount of iNOS protein. The increase of NO synthesis by IFN-gamma-plus-hCG was associated with the increase of tumor necrosis factor-alpha (TNF-alpha) secretion and hCG-induced NO production was decreased by the treatment with anti-murine TNF-alpha neutralizing antibody. This study provides evidence that hCG activates expression of iNOS protein in murine microglial cells accompanied by NO accumulation via pathway dependent on L-arginine in the culture medium, and further offers that TNF-alpha acts on the NO synthesis from IFN-gamma-primed murine microglial cells.  相似文献   

20.
Minocycline suppresses hypoxic activation of rodent microglia in culture   总被引:6,自引:0,他引:6  
Suk K 《Neuroscience letters》2004,366(2):167-171
Hypoxia is one of the important physiological stimuli that are often associated with a variety of pathological states such as ischemia, respiratory diseases, and tumorigenesis. In the central nervous system, hypoxia that is accompanied by cerebral ischemia not only causes neuronal cell injury, but may also induce pathological microglial activation. We have previously shown that hypoxia induces inflammatory activation of cultured microglia, and the hypoxic induction of nitric oxide production in microglia is mediated through p38 mitogen-activated protein kinase pathway. Now, we present evidence that minocycline, a tetracycline derivative, suppresses the hypoxic activation of cultured microglia by inhibiting p38 mitogen-activated protein kinase pathway. The drug markedly inhibited hypoxia-induced production of inflammatory mediators such as nitric oxide, TNFalpha, and IL-1beta as well as iNOS protein expression. The signal transduction pathway that leads to the activation of p38 mitogen-activated protein kinase was the molecular target of minocycline. Thus, the known neuroprotective effects of minocycline in animal models of cerebral ischemia may be partly due to its direct actions on brain microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号