首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Gestational alcohol exposure leads to a spectrum of neurological symptoms which range from severe mental retardation caused by high dose exposure, to subtle cognitive and neuropsychiatric symptoms caused by low-to-moderate doses. We and other investigators have demonstrated that exposure to moderate levels of alcohol throughout gestation leads to impaired neurogenesis in the adult hippocampus, although the mechanisms by which this occurs are not known. To begin to distinguish cell-intrinsic from microenvironmental contributions to impaired adult neurogenesis, we isolated neural stem progenitor cells (NSPCs) from the adult SVZ of mice exposed to moderate levels of alcohol throughout gestation. We found that NSPCs isolated from fetal alcohol exposed (FAE) mice displayed reduced neurosphere formation in culture, as assessed by a serial passage neurosphere assay, and reduced neuronal differentiation upon growth factor withdrawal. These studies suggest that gestational alcohol exposure leads to long-lasting NSPC-intrinsic dysregulation, which may underlie in vivo neurogenic deficits.  相似文献   

3.
The stage-specific embryonic antigen 4 (SSEA4) is commonly used as a cell surface marker to identify the pluripotent human embryonic stem (ES) cells. Immunohistochemistry on human embryonic central nervous system revealed that SSEA4 is detectable in the early neuroepithelium, and its expression decreases as development proceeds. Flow cytometry analysis of forebrain-derived cells demonstrated that the SSEA4-expressing cells are enriched in the neural stem/progenitor cell fraction (CD133(+)), but are rarely codetected with the neural stem cell (NSC) marker CD15. Using a sphere-forming assay, we showed that both subfractions CD133(+)/SSEA4(+) and CD133(+)/CD15(+) isolated from the embryonic forebrain are enriched in neurosphere-initiating cells. In addition CD133, SSEA4, and CD15 expression is sustained in the expanded neurosphere cells and also mark subfractions of neurosphere-initiating cells. Therefore, we propose that SSEA4 associated with CD133 can be used for both the positive selection and the enrichment of neural stem/progenitor cells from human embryonic forebrain.  相似文献   

4.
Forebrain neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Several strategies have been employed to eliminate adult neurogenesis and thereby determine whether depleting adult‐born neurons disrupts specific brain functions, but some approaches do not specifically target neural progenitors. We have developed a transgenic mouse line to reversibly ablate adult neural stem cells and suppress neurogenesis. The nestin‐tk mouse expresses herpes simplex virus thymidine kinase (tk) under the control of the nestin 2nd intronic enhancer, which drives expression in neural progenitors. Administration of ganciclovir (GCV) kills actively dividing cells expressing this transgene. We found that peripheral GCV administration suppressed SVZ‐olfactory bulb and DG neurogenesis within 2 weeks but caused systemic toxicity. Intracerebroventricular GCV infusion for 28 days nearly completely depleted proliferating cells and immature neurons in both the SVZ and DG without systemic toxicity. Reversibility of the effects after prolonged GCV infusion was slow and partial. Neurogenesis did not recover 2 weeks after cessation of GCV administration, but showed limited recovery 6 weeks after GCV that differed between the SVZ and DG. Suppression of neurogenesis did not inhibit antidepressant responsiveness of mice in the tail suspension test. These findings indicate that SVZ and DG neural stem cells differ in their capacity for repopulation, and that adult‐born neurons are not required for antidepressant responses in a common behavioral test of antidepressant efficacy. The nestin‐tk mouse should be useful for studying how reversible depletion of adult neurogenesis influences neurophysiology, other behaviors, and neural progenitor dynamics. J. Comp. Neurol. 514:567–582, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
We previously demonstrated that activation of ATP P2X receptors during oxygen and glucose deprivation inhibits neuroblast migration and in vitro neurogenesis from the subventricular zone (SVZ). Here, we have studied the effects of adenosine, the natural end‐product of ATP hydrolysis, in modulating neurogenesis and gliogenesis from the SVZ. We provide immunochemical, molecular and pharmacological evidence that adenosine via A1 receptors reduces neuronal differentiation of neurosphere cultures generated from postnatal SVZ. Furthermore, activation of A1 receptors induces downregulation of genes related to neurogenesis as demonstrated by gene expression analysis. Specifically, we found that A1 receptors trigger a signaling cascade that, through the release of IL10, turns on the Bmp2/SMAD pathway. Furthermore, activating A1 receptors in SVZ‐neural progenitor cells inhibits neurogenesis and stimulates astrogliogenesis as assayed in vitro in neurosphere cultures and in vivo in the olfactory bulb. Together, these data indicate that adenosine acting at A1 receptors negatively regulates adult neurogenesis while promoting astrogliogenesis, and that this feature may be relevant to pathological conditions whereby purines are profusely released. GLIA 2016;64:1465–1478  相似文献   

6.
7.
The adult mammalian brain contains populations of stem cells that can proliferate and then differentiate into neurons or glia. The highest concentration of such neural progenitor cells (NPC) is located in the subventricular zone (SVZ) and these cells can produce new olfactory bulb and cerebral cortical neurons. NPC may provide a cellular reservoir for replacement of cells lost during normal cell turnover and after brain injury. However, neurogenesis does not compensate for neuronal loss in age-related neurodegenerative disorders such as Alzheimer's disease (AD), suggesting the possibility that impaired neurogenesis contributes to the pathogenesis of such disorders. We now report that amyloid beta-peptide (Abeta), a self-aggregating neurotoxic protein thought to cause AD, can impair neurogenesis in the SVZ/cerebral cortex of adult mice and in human cortical NPC in culture. The proliferation and migration of NPC in the SVZ of amyloid precursor protein (APP) mutant mice, and in mice receiving an intraventricular infusion of Abeta, were greatly decreased compared to control mice. Studies of NPC neurosphere cultures derived from human embryonic cerebral cortex showed that Abeta can suppress NPC proliferation and differentiation, and can induce apoptosis. The adverse effects of Abeta on neurogenesis were associated with a disruption of calcium regulation in the NPC. Our data show that Abeta can impair cortical neurogenesis, and suggest that this adverse effect of Abeta contributes to the depletion of neurons and the resulting olfactory and cognitive deficits in AD.  相似文献   

8.
The adult mammalian retina is devoid of any detectable neurogenesis. However, different cell types have been suggested to potentially act as neural progenitors in the adult mammalian retina in vitro, such as ciliary body (CB), Muller glia, and retinal pigment epithelium (RPE) cells. In rodents and humans, strong evidence for neural stem or progenitor properties exists only for CB-derived cells, but not for other retinal cell types. Here, we provide a comparative analysis of adult rat CB- and RPE-derived cells suggesting that the two cell types share certain neural progenitor properties in vitro. CB and RPE cells expressed neural progenitor markers such as Nestin, Flk-1, Hes1, and Musashi. They proliferated under adherent and neurosphere conditions and showed limited self-renewal. Moreover, they differentiated into neuronal and glial cells based on the expression of differentiation markers such as the young neuronal marker beta-III tubulin and the glial and progenitor markers GFAP and NG2. Expression of beta-III tubulin was found in cells with neuronal and non-neuronal morphology. A subpopulation of RPE- and CB-derived progenitor cells expressed the neurogenesis-specific protein doublecortin (DCX). Interestingly, DCX expression defined a beta-III tubulin-positive CB and RPE fraction with a distinct neuronal morphology. In summary, the data suggest that RPE cells share with CB cells the potential to de-differentiate into a cell type with neural progenitor-like identity. In addition, DCX expression might define the neuronal-differentiating RPE- and CB-derived progenitor population.  相似文献   

9.
Acute inflammation in the poststroke period exacerbates neuronal damage and stimulates reparative mechanisms, including neurogenesis. However, only a small fraction of neural stem/progenitor cells survives. In this report, by using a highly reproducible model of cortical infarction in SCID mice, we examined the effects of immunodeficiency on reduction of brain injury, survival of neural stem/progenitor cells, and functional recovery. Subsequently, the contribution of T lymphocytes to neurogenesis was evaluated in mice depleted for each subset of T lymphocyte. SCID mice revealed the reduced apoptosis and enhanced proliferation of neural stem/progenitor cells induced by cerebral cortex after stroke compared with the immunocompetent wild‐type mice. Removal of T lymphocytes, especially the CD4+ T‐cell population, enhanced generation of neural stem/progenitor cells, followed by accelerated functional recovery. In contrast, removal of CD25+ T cells, a cell population including regulatory T lymphocytes, impaired functional recovery through, at least in part, suppression of neurogenesis. Our findings demonstrate a key role of T lymphocytes in regulation of poststroke neurogenesis and indicate a potential novel strategy for cell therapy in repair of the central nervous system. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Transforming growth factor (TGF)-beta1 has multiple functions in the adult central nervous system (CNS). It modulates inflammatory responses in the CNS and controls proliferation of microglia and astrocytes. In the diseased brain, TGF-beta1 expression is upregulated and, depending on the cellular context, its activity can be beneficial or detrimental regarding regeneration. We focus on the role of TGF-beta1 in adult neural stem cell biology and neurogenesis. In adult neural stem and progenitor cell cultures and after intracerebroventricular infusion, TGF-beta1 induced a long-lasting inhibition of neural stem and progenitor cell proliferation and a reduction in neurogenesis. In vitro, although TGF-beta1 specifically arrested neural stem and progenitor cells in the G0/1 phase of the cell cycle, it did not affect the self-renewal capacity and the differentiation fate of these cells. Also, in vivo, TGF-beta1 did not influence the differentiation fate of newly generated cells as shown by bromo-deoxyuridine incorporation experiments. Based on these data, we suggest that TGF-beta1 is an important signaling molecule involved in the control of neural stem and progenitor cell proliferation in the CNS. This might have potential implications for neurogenesis in a variety of TGF-beta1-associated CNS diseases and pathologic conditions.  相似文献   

11.
12.
In rodents, adult neurogenesis occurs in the olfactory bulb and the dentate gyrus of the hippocampus. It has been shown that exposure to psychosocial stress reduces cell proliferation in the dentate gyrus. However, little is known about how stress affects the proliferation kinetics of neural stem cells (NSCs) in the subventricular zone (SVZ), which provide new neurons to the olfactory bulb. We utilized a forced-swim model of stress in the mouse and found that chronic stress decreased the number of NSCs in the SVZ. The reduction of NSC number persisted for weeks after the cessation of stress but was reversed by treatment with the antidepressant drugs fluoxetine and imipramine. We demonstrated by in vitro colony-forming neurosphere assay that corticosterone attenuated neurosphere formation by adult NSCs and, in contrast, that serotonin increased the survival of NSCs. In addition, serotonin expanded the size of the NSC pool in the SVZ when it was infused into the lateral ventricle in vivo. These results suggest that, under chronic stress conditions, the number of NSCs is regulated by the actions of glucocorticoids and serotonin. These data provide insights into the molecular mechanisms underlying the pharmacological actions of antidepressant drugs.  相似文献   

13.
14.
Stroke increases neurogenesis. The authors investigated whether neural stem cells or progenitor cells in the adult subventricular zone (SVZ) of rats contribute to stroke-induced increase in neurogenesis. After induction of stroke in rats, the numbers of cells immunoreactive to doublecortin, a marker for immature neurons, increased in the ipsilateral SVZ and striatum. Infusion of an antimitotic agent (cytosine-beta-D-arabiofuranoside, Ara-C) onto the ipsilateral cortex eliminated more than 98% of actively proliferating cells in the SVZ and doublecortin-positive cells in the ipsilateral striatum. However, doublecortin-positive cells rapidly replenished after antimitotic agent depletion of actively proliferating cells. Depleting the numbers of actively proliferating cells in vivo had no effect on the numbers of neurospheres formed in vitro, yet the numbers of neurospheres derived from stroke rats significantly (P<0.05) increased. Neurospheres derived from stroke rats self-renewed and differentiated into neurons and glia. In addition, doublecortin-positive cells generated in the SVZ migrated in a chainlike structure toward ischemic striatum. These findings indicate that in the adult stroke brain, increases in recruitment of neural stem cells contribute to stroke-induced neurogenesis, and that newly generated neurons migrate from the SVZ to the ischemic striatum.  相似文献   

15.
Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor cells in experimental stroke, and the influence of mechanical injury on adult hippocampal neurogenesis in models of traumatic brain injury (TBI). Stroke potently stimulates forebrain SVZ cell proliferation and neurogenesis. SVZ neuroblasts are induced to migrate to the injured striatum, and to a lesser extent to the peri-infarct cortex. Controversy exists as to the types of neurons that are generated in the injured striatum, and whether adult-born neurons contribute to functional restoration remains uncertain. Advances in understanding the regulation of SVZ neurogenesis in general, and stroke-induced neurogenesis in particular, may lead to improved integration and survival of adult-born neurons at sites of injury. Dentate gyrus cell proliferation and neurogenesis similarly increase after experimental TBI. However, pre-existing neuroblasts in the dentate gyrus are vulnerable to traumatic insults, which appear to stimulate neural stem cells in the SGZ to proliferate and replace them, leading to increased numbers of new granule cells. Interventions that stimulate hippocampal neurogenesis appear to improve cognitive recovery after experimental TBI. Transgenic methods to conditionally label or ablate neural stem cells are beginning to further address critical questions regarding underlying mechanisms and functional significance of neurogenesis after stroke or TBI. Future therapies should be aimed at directing appropriate neuronal replacement after ischemic or traumatic injury while suppressing aberrant integration that may contribute to co-morbidities such as epilepsy or cognitive impairment.  相似文献   

16.
In the mammalian central nervous system, generation of new neurons persists in the subventricular zone (SVZ) throughout life. However, the capacity for neurogenesis in this region declines with aging. Recent studies have examined the degree of these age-related neurogenic declines and the changes of cytoarchitecture of the SVZ with aging. However, little is known about the molecular changes in the SVZ with aging. In this study, we dissected the SVZs from rats aged postnatal day 28, 3 months, and 24 months. The SVZ tissues were processed for 2-D gel electrophoresis to identify protein changes following aging. Protein spots were subsequently subjected to mass spectrometry analysis to compare age-related alterations in the SVZ proteome. We also examined the level of cell proliferation in the SVZ in animals of these three age groups by using bromodeoxyuridine labeling. We found significant age-related changes in the expression of several proteins that play critical roles in the proliferation and survival of neural stem/progenitor cells in the SVZ. Among these proteins, glial fibrillary acidic protein, ubiquitin carboxy terminal hydrolase 1, glutathione S-transferase omega, and preproalbumin were increased with aging, whereas collapsin response-mediated protein 4 (CRMP-4), CRMP-5, and microsomal protease ER60 exhibited declines with aging. We have also observed a significant decline of neural stem/progenitor cell proliferation in the SVZ with aging. These alterations in protein expression in the SVZ with aging likely underlie the diminishing proliferative capacity of stem/progenitor cells in the aging brain.  相似文献   

17.
The mammalian brain has been perceived as a quiescent organ incapable of postnatal neurogenesis for many years. Most recently, several studies have demonstrated that the adult mammalian brain is indeed capable of neurogenesis and that the process is primarily confined to the subventricular zone (SVZ) of the forebrain and the subgranular zone (SGZ) of the hippocampus. Of these regions, the SVZ is the largest niche of neurogenesis in the adult mammalian brain. Within this niche resides a subpopulation of astrocytes with stem cell-like features of self-renewal and multipotentiality. Interestingly, there is also a subpopulation of cells within brain tumors that possess these same characteristics. Based on these findings, the emerging hypothesis is that brain tumor stem cells may be derived from neural stem cells and that both of these populations may originate from the SVZ. This possible connection stresses the importance of studying and understanding the role that the human SVZ plays in not only harboring neural and brain tumor stem cells, but how this microenvironment may support both neurogenesis and tumorigenesis. Furthermore, the obvious differences in the SVZ between humans and other animals make it important to understand the human model when studying human disease. Such an understanding may lead to novel therapeutic strategies for both neurodegenerative diseases and currently intractable brain tumors.  相似文献   

18.
Neural progenitor cells, including neural stem cells, are a potential expandable source of graft material for transplantation aimed at repairing the damaged CNS. Here we present the first evidence that in vitro-expanded fetus-derived neurosphere cells were able to generate neurons in vivo and improve motor function upon transplantation into an adult rat spinal-cord-contusion injury model. As the source of graft material, we used a neural stem cell-enriched population that was derived from rat embryonic spinal cord (E14.5) and expanded in vitro by neurosphere formation. Nine days after contusion injury, these neurosphere cells were transplanted into adult rat spinal cord at the injury site. Histological analysis 5 weeks after the transplantation showed that mitotic neurogenesis occurred from the transplanted donor progenitor cells within the adult rat spinal cord, a nonneurogenic region; that these donor-derived neurons extended their processes into the host tissues; and that the neurites formed synaptic structures. Furthermore, analysis of motor behavior using a skilled reaching task indicated that the treated rats showed functional recovery. These results indicate that in vitro-expanded neurosphere cells derived from the fetal spinal cord are a potential source for transplantable material for treatment of spinal cord injury.  相似文献   

19.
Galectin-1 (Gal-1) has recently been identified as a key molecule that plays important roles in the regulation of neural progenitor cell proliferation in two neurogenic regions: the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone of the hippocampal dentate gyrus. To test the hypothesis that Gal-1 contributes to adult neurogenesis after focal ischemia, we studied the temporal profile of endogenous Gal-1 expression and the effects of human recombinant Gal-1 on neurogenesis and neurological functions in an experimental focal ischemic model. In the normal brain, Gal-1 expression was observed only in the SVZ. In the ischemic brain, Gal-1 expression was markedly upregulated in the SVZ and the area of selective neuronal death around the infarct in the striatum. The temporal profile of Gal-1 expression was correlated with that of neural progenitor cell proliferation in the SVZ of the ischemic hemisphere. Double-labeling studies revealed that Gal-1 was localized predominantly in both reactive astrocytes and SVZ astrocytes. Administration of Gal-1, which is known to have carbohydrate-binding ability, into the lateral ventricle increased neurogenesis in the ipsilateral SVZ and improved sensorimotor dysfunction after focal ischemia. By contrast, blockade of Gal-1 in the SVZ by the administration of anti-Gal-1 neutralizing antibody strongly inhibited neurogenesis and diminished neurological function. These results suggest that Gal-1 is one of the principal regulators of adult SVZ neurogenesis through its carbohydrate-binding ability and provide evidence that Gal-1 protein has a role in the improvement of sensorimotor function after stroke.  相似文献   

20.
Experimental stroke increases cell proliferation and neurogenesis in the subventricular zone (SVZ) and in the dentate gyrus subgranular zone (SGZ) in the adult mammalian brain. This study examined the effects of postischemic voluntary exercise (running wheel) and environmental enrichment on the SVZ and SGZ 1 week after focal cortical ischemia in adult spontaneously hypertensive rats. Immunohistochemical labeling was performed for incorporation of specific cell markers such as Ki67 and 5-bromodeoxyuridine (proliferating and newborn cells), terminal deoxynucleotidyl transferase-mediated dUTP in situ nick-end labeling (apoptotic cells), Sox-2 and glial fibrillary acidic protein (neural stem and progenitor cells), polysialylated neural cell adhesion molecule and doublecortin (neuroblasts). Postischemic exercise and environmental enrichment differentially modulated SVZ cell genesis but lacked effects on the SGZ. Lesion-induced proliferation of neural stem/progenitor cells and neuronal precursors was attenuated in stroke runners without any effects on apoptosis or neuronal migration in the forebrain. Running activity did not affect the SVZ in intact rats. In contrast to postischemic wheel running, postischemic environmental enrichment did not have attenuating effects on the ipsilateral SVZ and increased proliferating putative neural stem cells and neuronal precursors contralaterally. A significant functional improvement, assessed using a rotating pole, was observed only in the postischemically enriched group and was likely due to other types of plasticity than neuronal replacement at this early time point. It may be concluded that in contrast to enriched environment, exercise during the first postischemic week might be detrimental for regenerative processes initiated in the SVZ after stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号