首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individuals with autism spectrum disorder (ASD) often fail to attach context to their memories and are specifically impaired in processing social aspects of contextual information. The aim of the present study was to investigate the modulatory influence of social vs. non-social context on neural mechanisms during encoding in ASD. Using event-related fMRI, 13 boys with ASD and 13 typically developing boys comparable for age and IQ were investigated during encoding of neutral objects presented either with a social (faces) or a non-social (houses) context. A memory paradigm was then applied to identify brain activation patterns associated with encoding of subsequently recollected versus non-recollected objects.On the behavioural level, no significant between-group differences emerged. In particular, no differential effects of context on memory performance were observed. Neurally, however, context-specific group differences were observed in several brain regions. During encoding of subsequently recollected objects presented with a face, ASD subjects (compared to controls) showed reduced neural activation in the bilateral inferior frontal gyrus, bilateral middle frontal gyrus and right inferior parietal lobule. Neural activation in the right inferior frontal gyrus was positively correlated with memory performance in controls, but negatively in ASD individuals. During encoding of subsequently non-recollected objects presented in the non-social context, ASD subjects showed increased activation in the dorsal MPFC.Our findings suggest that in ASD subjects, fronto-parietal brain regions subserving memory formation and the association of contextual information are activated atypically when a social context is presented at encoding. The data add to findings from related research fields indicating that in ASD, socioemotional impairment extends into domains beyond social cognition. Increased activation in the dorsal MPFC in ASD individuals might reflect supervisory cognitive processes related to the suppression of a distracting non-social context.  相似文献   

2.
Visual context plays a prominent role in everyday perception. Contextual information can facilitate recognition of objects within scenes by providing predictions about objects that are most likely to appear in a specific setting, along with the locations that are most likely to contain objects in the scene. Is such identity-related ("semantic") and location-related ("spatial") contextual knowledge represented separately or jointly as a bound representation? We conducted a functional magnetic resonance imaging (fMRI) priming experiment whereby semantic and spatial contextual relations between prime and target object pictures were independently manipulated. This method allowed us to determine whether the two contextual factors affect object recognition with or without interacting, supporting a unified versus independent representations, respectively. Results revealed a Semantic x Spatial interaction in reaction times for target object recognition. Namely, significant semantic priming was obtained when targets were positioned in expected (congruent), but not in unexpected (incongruent), locations. fMRI results showed corresponding interactive effects in brain regions associated with semantic processing (inferior prefrontal cortex), visual contextual processing (parahippocampal cortex), and object-related processing (lateral occipital complex). In addition, activation in fronto-parietal areas suggests that attention and memory-related processes might also contribute to the contextual effects observed. These findings indicate that object recognition benefits from associative representations that integrate information about objects' identities and their locations, and directly modulate activation in object-processing cortical regions. Such context frames are useful in maintaining a coherent and meaningful representation of the visual world, and in providing a platform from which predictions can be generated to facilitate perception and action.  相似文献   

3.
Hayes SM  Nadel L  Ryan L 《Hippocampus》2007,17(9):873-889
Previous research has investigated intentional retrieval of contextual information and contextual influences on object identification and word recognition, yet few studies have investigated context effects in episodic memory for objects. To address this issue, unique objects embedded in a visually rich scene or on a white background were presented to participants. At test, objects were presented either in the original scene or on a white background. A series of behavioral studies with young adults demonstrated a context shift decrement (CSD)-decreased recognition performance when context is changed between encoding and retrieval. The CSD was not attenuated by encoding or retrieval manipulations, suggesting that binding of object and context may be automatic. A final experiment explored the neural correlates of the CSD, using functional Magnetic Resonance Imaging. Parahippocampal cortex (PHC) activation (right greater than left) during incidental encoding was associated with subsequent memory of objects in the context shift condition. Greater activity in right PHC was also observed during successful recognition of objects previously presented in a scene. Finally, a subset of regions activated during scene encoding, such as bilateral PHC, was reactivated when the object was presented on a white background at retrieval. Although participants were not required to intentionally retrieve contextual information, the results suggest that PHC may reinstate visual context to mediate successful episodic memory retrieval. The CSD is attributed to automatic and obligatory binding of object and context. The results suggest that PHC is important not only for processing of scene information, but also plays a role in successful episodic memory encoding and retrieval. These findings are consistent with the view that spatial information is stored in the hippocampal complex, one of the central tenets of Multiple Trace Theory.  相似文献   

4.
Knowledge about the principles that govern large‐scale neural representations of objects is central to a systematic understanding of object recognition. We used functional magnetic resonance imaging (fMRI) and multivariate pattern classification to investigate two such candidate principles: category preference and location encoding. The former designates the preferential activation of distinct cortical regions by a specific category of objects. The latter refers to information about where in the visual field a particular object is located. Participants viewed exemplars of three object categories (faces, bodies, and scenes) that were presented left or right of fixation. The analysis of fMRI activation patterns revealed the following. Category‐selective regions retained their preference to the same categories in a manner tolerant to changes in object location. However, category preference was not absolute: category‐selective regions also contained location‐tolerant information about nonpreferred categories. Furthermore, location information was present throughout high‐level ventral visual cortex and was distributed systematically across the cortical surface. We found more location information in lateral‐occipital cortex than in ventral‐temporal cortex. Our results provide a systematic account of the extent to which the principles of category preference and location encoding determine the representation of objects in the high‐level ventral visual cortex. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Activity in category selective regions of the temporal and parietal lobes during encoding has been associated with subsequent memory for face and scene stimuli. Reactivation theories of memory consolidation predict that after encoding connectivity between these category‐selective regions and the hippocampus should be modulated and predict recognition memory. However, support for this proposal has been limited in humans. Here, participants completed a resting‐state functional MRI (fMRI) scan, followed by face‐ and place‐encoding tasks, followed by another resting‐state fMRI scan during which they were asked to think about the stimuli they had previously encountered. Individual differences in face recognition memory were predicted by the degree to which connectivity between face‐responsive regions of the fusiform gyrus and perirhinal cortex increased following the face‐encoding task. In contrast, individual differences in scene recognition were predicted by connectivity between the hippocampus and a scene‐selective region of the retrosplenial cortex before and after the place‐encoding task. Our results provide novel evidence for category specificity in the neural mechanisms supporting memory consolidation.  相似文献   

6.
We used quantitative, coordinate‐based meta‐analysis to objectively synthesize age‐related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23–34 years) were matched to 20 studies with children (age means: 7–12 years). The separate meta‐analyses of these two sets showed a pattern of reading‐related brain activation common to children and adults in left ventral occipito‐temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta‐analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading‐related activation clusters in children and adults are provided. Hum Brain Mapp 36:1963–1981, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. .  相似文献   

7.
We investigated the neural correlates supporting three kinds of memory judgments after very short delays using naturalistic material. In two functional magnetic resonance imaging (fMRI) experiments, subjects watched short movie clips, and after a short retention (1.5–2.5 s), made mnemonic judgments about specific aspects of the clips. In Experiment 1, subjects were presented with two scenes and required to either choose the scene that happened earlier in the clip (“scene‐chronology”), or with a correct spatial arrangement (“scene‐layout”), or that had been shown (“scene‐recognition”). To segregate activity specific to seen versus unseen stimuli, in Experiment 2 only one probe image was presented (either target or foil). Across the two experiments, we replicated three patterns underlying the three specific forms of memory judgment. The precuneus was activated during temporal‐order retrieval, the superior parietal cortex was activated bilaterally for spatial‐related configuration judgments, whereas the medial frontal cortex during scene recognition. Conjunction analyses with a previous study that used analogous retrieval tasks, but a much longer delay (>1 day), demonstrated that this dissociation pattern is independent of retention delay. We conclude that analogous brain regions mediate task‐specific retrieval across vastly different delays, consistent with the proposal of scale‐invariance in episodic memory retrieval. Hum Brain Mapp 36:2495–2513, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.  相似文献   

8.
Naming individual objects is accompanied with semantic recognition. Previous studies examined brain‐networks responsible for these operations individually. However, it remains unclear how these brain‐networks are related. To address this problem, we examined the brain‐networks during a novel object‐naming task, requiring participants to name animals in photographs at a specific‐level (e.g., “pigeon”). When the participants could not remember specific names, they answered basic names (e.g., “bird”). After fMRI scanning during the object‐naming task, the participants rated familiarity of the animals based on their sense of knowing. Since participants tend to remember specific names for familiar objects compared with unfamiliar objects, a typical issue in an object‐naming task is an internal covariance between the naming and familiarity levels. We removed this confounding factor by adjusting the familiarity/naming level of stimuli, and demonstrated distinct brain regions related to the two operations. Among them, the left inferior frontal gyrus triangularis (IFGtri) contained object‐naming and semantic‐recognition related areas in its anterior‐ventral and posterior‐dorsal parts, respectively. Psychophysiological interaction analyses suggested that both parts show connectivity with the brain regions related to object‐naming. By examining the connectivity under control tasks requiring nonlexical semantic retrieval (e.g., animal's body color), we found that both IFGtri parts altered their targeting brain areas according to the required memory attributes, while only the posterior‐dorsal part connected the brain regions related to semantic recognition. Together, the semantic recognition may be processed by distinct brain network from those for voluntary semantic retrievals including object‐naming although all these networks are mediated by the posterior‐dorsal IFGtri.  相似文献   

9.
Imaging cognition II: An empirical review of 275 PET and fMRI studies   总被引:1,自引:0,他引:1  
Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been extensively used to explore the functional neuroanatomy of cognitive functions. Here we review 275 PET and fMRI studies of attention (sustained, selective, Stroop, orientation, divided), perception (object, face, space/motion, smell), imagery (object, space/motion), language (written/spoken word recognition, spoken/no spoken response), working memory (verbal/numeric, object, spatial, problem solving), semantic memory retrieval (categorization, generation), episodic memory encoding (verbal, object, spatial), episodic memory retrieval (verbal, nonverbal, success, effort, mode, context), priming (perceptual, conceptual), and procedural memory (conditioning, motor, and nonmotor skill learning). To identify consistent activation patterns associated with these cognitive operations, data from 412 contrasts were summarized at the level of cortical Brodmann's areas, insula, thalamus, medial-temporal lobe (including hippocampus), basal ganglia, and cerebellum. For perception and imagery, activation patterns included primary and secondary regions in the dorsal and ventral pathways. For attention and working memory, activations were usually found in prefrontal and parietal regions. For language and semantic memory retrieval, typical regions included left prefrontal and temporal regions. For episodic memory encoding, consistently activated regions included left prefrontal and medial temporal regions. For episodic memory retrieval, activation patterns included prefrontal, medial temporal, and posterior midline regions. For priming, deactivations in prefrontal (conceptual) or extrastriate (perceptual) regions were consistently seen. For procedural memory, activations were found in motor as well as in non-motor brain areas. Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges. These observations are discussed in relation to functional specialization as well as functional integration.  相似文献   

10.
Previous studies across species have established that the aging process adversely affects certain memory‐related brain regions earlier than others. Behavioral tasks targeted at the function of vulnerable regions can provide noninvasive methods for assessing the integrity of particular components of memory throughout the lifespan. The present study modified a previous task designed to separately but concurrently test detailed memory for object identity and spatial location. Memory for objects or items is thought to rely on perirhinal and lateral entorhinal cortices, among the first targets of Alzheimer's related neurodegeneration. In line with prior work, we split an aged adult sample into “impaired” and “unimpaired” groups on the basis of a standardized word‐learning task. The “impaired” group showed widespread difficulty with memory discrimination, whereas the “unimpaired” group showed difficulty with object, but not spatial memory discrimination. These findings support the hypothesized greater age‐related impacts on memory for objects or items in older adults, perhaps even with healthy aging. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Memories associated with the self are remembered more accurately than those associated with others. The memory enhancement related to the self is known as the self‐reference effect (SRE). However, little is known regarding the neural mechanisms underlying the SRE in a social context modulated by social relationships. In the present fMRI study, we investigated encoding‐related activation of face memories encoded with the self‐referential process in a social context that was manipulated by imagining a person‐to‐person relationship. Healthy young adults participated in the present study. During encoding, participants encoded unfamiliar target faces by imagining a future friendship with themselves (Self), their friends (Friend), or strangers (Other). During retrieval, participants were presented with target and distracter faces one by one, and they judged whether each face had been previously learned. In the behavioral results, target faces encoded in the Self condition were remembered more accurately than those encoded in the Other condition. fMRI results demonstrated that encoding‐related activation in the medial prefrontal cortex (mPFC) was significantly greater in the Self condition than in the Friend or Other conditions. In addition, the generalized psycho‐physiological interaction (gPPI) analysis showed that functional connectivity between activation in the hippocampus and the cortical midline structures (CMSs), including the mPFC and precuneus, was significant in the Self but not in the Other condition. These findings suggest that the SRE in a social context could be involved in the interaction between the CMS regions, which are related to the self‐referential process, and the hippocampus related to the memory process. Hum Brain Mapp 38:4256–4269, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
The brain‐derived neurotrophic factor (BDNF) was shown to be involved in spatial memory and spatial strategy preference. A naturally occurring single nucleotide polymorphism of the BDNF gene (Val66Met) affects activity‐dependent secretion of BDNF. The current event‐related fMRI study on preselected groups of ‘Met’ carriers and homozygotes of the ‘Val’ allele investigated the role of this polymorphism on encoding and retrieval in a virtual navigation task in 37 healthy volunteers. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the invisible target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. The experiment consisted of blocks, informing participants of which trial type would be most likely to occur during retrieval. We observed no differences between genetic groups in task performance or time to complete the navigation tasks. The imaging results show that Met carriers compared to Val homozygotes activate the left hippocampus more during successful object location memory encoding. The observed effects were independent of non‐significant performance differences or volumetric differences in the hippocampus. These results indicate that variations of the BDNF gene affect memory encoding during spatial navigation, suggesting that lower levels of BDNF in the hippocampus results in less efficient spatial memory processing.  相似文献   

13.
Previous work has shown that the dorsal hippocampus has greater activity than ventral regions during place navigation. Exposure to a novel context has also been found to increase hippocampal activation, possibly due to increased spatial demands. However, activation patterns in dorsal and ventral regions have not been investigated in the Morris water task (MWT), which remains the most popular assay of place memory in rodents. We measured activity in a large population of neurons across the CA1 dorsal–ventral axis by estimating nuclear Arc mRNA with stereologic systematic‐random sampling procedures following changes to goal location or spatial context in the MWT in rats. Following changes to goal location or spatial context in the MWT, we did not find an effect on Arc mRNA expression in CA1. However, Arc expression was greater in the dorsal compared to the ventral aspect of CA1 during task performance. Several views might account for these observed differences in dorsal–ventral Arc mRNA expression, including task parameters or the granularity of representation that differs along the dorsal–ventral hippocampal axis. Future work should determine the effects of task differences and required memory precision in relation to dorsal–ventral hippocampal neuronal activity.  相似文献   

14.
When encoding new episodic memories, visual and semantic processing is proposed to make distinct contributions to accurate memory and memory distortions. Here, we used fMRI and preregistered representational similarity analysis to uncover the representations that predict true and false recognition of unfamiliar objects. Two semantic models captured coarse-grained taxonomic categories and specific object features, respectively, while two perceptual models embodied low-level visual properties. Twenty-eight female and male participants encoded images of objects during fMRI scanning, and later had to discriminate studied objects from similar lures and novel objects in a recognition memory test. Both perceptual and semantic models predicted true memory. When studied objects were later identified correctly, neural patterns corresponded to low-level visual representations of these object images in the early visual cortex, lingual, and fusiform gyri. In a similar fashion, alignment of neural patterns with fine-grained semantic feature representations in the fusiform gyrus also predicted true recognition. However, emphasis on coarser taxonomic representations predicted forgetting more anteriorly in the anterior ventral temporal cortex, left inferior frontal gyrus and, in an exploratory analysis, left perirhinal cortex. In contrast, false recognition of similar lure objects was associated with weaker visual analysis posteriorly in early visual and left occipitotemporal cortex. The results implicate multiple perceptual and semantic representations in successful memory encoding and suggest that fine-grained semantic as well as visual analysis contributes to accurate later recognition, while processing visual image detail is critical for avoiding false recognition errors.SIGNIFICANCE STATEMENT People are able to store detailed memories of many similar objects. We offer new insights into the encoding of these specific memories by combining fMRI with explicit models of how image properties and object knowledge are represented in the brain. When people processed fine-grained visual properties in occipital and posterior temporal cortex, they were more likely to recognize the objects later and less likely to falsely recognize similar objects. In contrast, while object-specific feature representations in fusiform gyrus predicted accurate memory, coarse-grained categorical representations in frontal and temporal regions predicted forgetting. The data provide the first direct tests of theoretical assumptions about encoding true and false memories, suggesting that semantic representations contribute to specific memories as well as errors.  相似文献   

15.
Visual working memory (VWM) is a capacity-limited cognitive resource that plays an important role in complex cognitive behaviors. Recent studies indicate that regions subserving VWM may play a role in the perception and recognition of visual objects, suggesting that conscious object perception may depend on the same cognitive and neural architecture that supports the maintenance of visual object information. In the present study, we examined this question by testing object processing under a concurrent VWM load. Under a high VWM load, recognition was impaired for objects presented in the left visual field, in particular when two objects were presented simultaneously. Multivariate fMRI revealed that two independent but partially overlapping networks of brain regions contribute to object recognition. The first network consisted of regions involved in VWM encoding and maintenance. Importantly, these regions were also sensitive to object load. The second network comprised regions of the ventral temporal lobes traditionally associated with object recognition. Importantly, activation in both networks predicted object recognition performance. These results indicate that information processing in regions that mediate VWM may be critical to conscious visual perception. Moreover, the observation of a hemifield asymmetry in object recognition performance has important theoretical and clinical significance for the study of visual neglect.  相似文献   

16.
The Itti and Koch (Vision Research 40: 1489–1506, 2000) saliency map model has inspired a wealth of research testing the claim that bottom-up saliency determines the placement of eye fixations in natural scenes. Although saliency seems to correlate with (although not necessarily cause) fixation in free-viewing or encoding tasks, it has been suggested that visual saliency can be overridden in a search task, with saccades being planned on the basis of target features, rather than being captured by saliency. Here, we find that target regions of a scene that are salient according to this model are found quicker than control regions (Experiment 1). However, this does not seem to be altered by filtering features in the periphery using a gaze-contingent display (Experiment 2), and a deeper analysis of the eye movements made suggests that the saliency effect is instead due to the meaning of the scene regions. Experiment 3 supports this interpretation, showing that scene inversion reduces the saliency effect. These results suggest that saliency effects on search may have nothing to do with bottom-up saccade guidance.  相似文献   

17.
To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object‐related spatial cues while 47 participants actively navigated in an open‐field virtual environment. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the removed target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. Participants were informed in blocks about which type of retrieval trial was most likely to occur, thereby modulating expectations of having to rely on a single landmark or on a configuration of landmarks. How the spatial learning systems in the hippocampus and caudate nucleus were involved in these landmark‐based encoding and retrieval processes were investigated. Landmark configurations can create a geometry similar to boundaries in an environment. It was found that the hippocampus was involved in encoding when relying on configurations of landmarks, whereas the caudate nucleus was involved in encoding when relying on single landmarks. This might suggest that the observed hippocampal activation for configurations of objects is linked to a spatial representation observed with environmental boundaries. Retrieval based on configurations of landmarks activated regions associated with the spatial updation of object locations for reorientation. When only a single landmark was available during retrieval, regions associated with updating the location of oneself were activated. There was also evidence that good between‐participant performance was predicted by right hippocampal activation. This study therefore sheds light on how the brain deals with changing demands on spatial processing related purely to landmarks. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Neuromodulatory regions that detect salience, such as amygdala and ventral tegmental area (VTA), have distinct effects on memory. Yet, questions remain about how these modulatory regions target subregions across the hippocampus and medial temporal lobe (MTL) cortex. Here, we sought to characterize how VTA and amygdala subregions (i.e., basolateral amygdala and central‐medial amygdala) interact with hippocampus head, body, and tail, as well as cortical MTL areas of perirhinal cortex and parahippocampal cortex in a task‐free state. To quantify these interactions, we used high‐resolution resting state fMRI and characterized pair‐wise, partial correlations across regions‐of‐interest. We found that basolateral amygdala showed greater functional coupling with hippocampus head, hippocampus tail, and perirhinal cortex when compared to either VTA or central‐medial amygdala. Furthermore, the VTA showed greater functional coupling with hippocampus tail when compared to central‐medial amygdala. There were no significant differences in functional coupling with hippocampus body and parahippocampal cortex. These results support a framework by which neuromodulatory regions do not indiscriminately influence all MTL subregions equally, but rather bias information processing to discrete MTL targets. These findings provide a more specified model of the intrinsic properties of systems underlying MTL neuromodulation. This emphasizes the need to consider heterogeneity both across and within neuromodulatory systems to better understand affective memory.  相似文献   

19.
Models of eye movement control in natural scenes often distinguish between stimulus-driven processes (which guide the eyes to visually salient regions) and those based on task and object knowledge (which depend on expectations or identification of objects and scene gist). In the present investigation, the eye movements of a patient with visual agnosia were recorded while she searched for objects within photographs of natural scenes and compared to those made by students and age-matched controls. Agnosia is assumed to disrupt the top-down knowledge available in this task, and so may increase the reliance on bottom-up cues. The patient's deficit in object recognition was seen in poor search performance and inefficient scanning. The low-level saliency of target objects had an effect on responses in visual agnosia, and the most salient region in the scene was more likely to be fixated by the patient than by controls. An analysis of model-predicted saliency at fixation locations indicated a closer match between fixations and low-level saliency in agnosia than in controls. These findings are discussed in relation to saliency-map models and the balance between high and low-level factors in eye guidance.  相似文献   

20.
Functional differences in the anterior and posterior hippocampus during episodic memory processing have not been examined in human electrophysiological data. This is in spite of strong evidence for such differences in rodent data, including greater place cell specificity in the dorsal hippocampus, greater sensitivity to the aversive or motivational content of memories in ventral regions, connectivity analyses identifying preferential ventral hippocampal connections with the amygdala, and gene expression analyses identifying a dorsal–ventral gradient. We asked if memory‐related oscillatory patterns observed in human hippocampal recordings, including the gamma band and slow‐theta (2.5–5 Hz) subsequent memory effects, would exhibit differences along the longitudinal axis and between hemispheres. We took advantage of a new dataset of stereo electroencephalography patients with simultaneous, robotically targeted anterior, and posterior hippocampal electrodes to directly compare oscillatory subsequent memory effects during item encoding. This same data set allowed us to examine left–right connectivity and hemispheric differences in hippocampal oscillatory patterns. Our data suggest that a power increase during successful item encoding in the 2.5–5 Hz slow‐theta frequency range preferentially occurs in the posterior hippocampus during the first 1,000 ms after item presentation, while a gamma band power increase is stronger in the dominant hemisphere. This dominant–nondominant pattern in the gamma range appears to reverse during item retrieval, however. Intrahippocampal phase coherence was found to be stronger during successful item encoding. Our phase coherence data are also consistent with existing reports of a traveling wave for theta oscillations propagating along the septotemporal (longitudinal) axis of the human hippocampus. We examine how our findings fit with theories of functional specialization along the hippocampal axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号